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ABSTRACT

We review the symmetry method that can be used to solve differential and difference

equations. We use the symmetry method to solve the sixth order difference equation.

un+6 =
un

An +Bnunun+3

where the initial values u0, u1, · · · , u5 are arbitrary nonzero real numbers and the

eighth order difference equation

un+8 =
un

An +Bnunun+2un+4un+6

where the initial values u0, u1, · · · , u7 are arbitrary nonzero real numbers by deter-

mining Lie groups of symmetries.

Keywords: Differential equations, Difference equations, Lie groups, Symmetry

method.
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1. LITERATURE REVIEW

Nonlinear differential and difference equations have important applications in dif-

ferent fields of science and technology. Consequently, there is a need for methods

that can be used to solve such equations. The idea of using change of variable was

introduced, which transforms an ordinary differential equation (ODE) into a simpler

equation by Sophus Lie (1482). He used symmetry to solve differential equations

by determining Lie groups of symmetries of a given ordinary differential equation.

For an introduction to symmetry method for ODEs, see [Olver (1993), Bluman and

Kumei (1989), Stephani (1989) and Hydon (2000)].

Meada (1987) had shown that difference equations of order one can be solved by

Lie’s method and he showed that the linearized symmetry condition (LSC) for such

difference equation tends to a set of functional equations. Quisple and Sahdevan

(1993) were interested by this method and they extended Meada’s idea to higher

order difference equations but in restricted form. Levi et al. (1997) expanded the

linearized symmetry condition as a series in powers of un but the expression derived

by them was complicated. Hydon (2000) introduced a method for obtaining the Lie

symmetries and used it to reduce the order of the ordinary difference equation and

to find the solution. Then, he applied this method to second order difference equa-

tions. Recently, symmetry methods have been extended to higher order difference

equations [[4], [5], [7], [8]]. The idea consists in finding symmetries of the equations

and use them to lower the order of the equation.

In this Thesis, we study the symmetry method for ordinary differential and

difference equations. We investigate the exact solutions of sixth and eighth order
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nonlinear difference equations using a group of transformations (Lie symmetries).

This Thesis is organized as follows, in chapter one, we investigate symmetries

methods for first order differential equations and we show how can we use symmetry

to solve these equations. Then, we generalize the symmetry method for higher order

difference equations and we show how can we use symmetry to solve non-linear higher

order difference equations. In chapter two, we investigate symmetry methods for

first and second order difference equations, and we show how can we use symmetry

to solve these equations. We generalize the symmetry method for higher order

difference equations and we show how can we use symmetry to solve non-linear

higher order difference equations of third order. In chapter three we investigate

the exact solutions of (4.1.1) and (4.2.1) non-linear difference equations using Lie

symmetries.

In the future we want to study stability for difference equations (4.1.1) and

(4.2.1).



2. PRELIMINARIES

2.1 Symmetry Methods for Differential Equations

2.1.1 Symmetry of Geometrical Object

To understand the concept of symmetries of ordinary differential equations, it is

suitable to consider symmetries of objects. A symmetry of a geometrical object

is an invertible transformation that maps the object to itself. The points of an

object may be mapped to different points, but the object as a whole is unchanged

by a symmetry. For example, consider the rotation of a regular octagon about its

diameters ae, bf , cg, dh (see figure 2.1).

Fig. 2.1: Symmetries of an Octagon

We observe that the points themselves may change but the whole object stays

as it is, so the transformation is a symmetry. Also, if the angle of rotation is an

integer multiple of π
4
, the object is mapped to itself, so the transformation is a
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symmetry (see figure 2.2).

Fig. 2.2: Transformation by π
4

Moreover, every geometrical object has a trivial symmetry which is the trans-

formation that maps every point to itself. In this example the rotation of an octagon

by 2π is a trivial symmetry (see figure 2.3).

Fig. 2.3: Transformation by 2π

In addition, each symmetry of geometrical object has a unique inverse which is

a symmetry. For example, let T denote a rotation of a regular octagon by π
2
. Then

the inverse of T (T−1) is a rotation by 3π
2

(see figure 2.4 and 2.5).

Fig. 2.4: Transformation by π
2

Definition 2.1. [9] A symmetry is a diffeomorphism that maps the set of solutions

of the ODE to itself.
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Fig. 2.5: Transformation by 3π
2

Fig. 2.6: Composition of transformation π
2 and 3π

2

Symmetry must preserve the shape of the object, that is the distance between

any two points of the object must be preserved. Therefore, the only transforma-

tions of Euclidean space consist of rotations, translations, and refections. We define

symmetry as:

Definition 2.2. [9] A transformation is a symmetry if it satisfies the following

properties:

1. The transformation preserves the structure.

2. The transformation is a diffeomorphism, that is, it is a smooth invertible map-

ping whose inverse is also smooth.

3. The transformation maps the object to itself [e.g., a planar object in the (x, y)

plane and its image in the (x̄, ȳ) plane are indistinguishable].

We restrict attention to transformations satisfying conditions 1 and 2. Such

transformations are symmetries if they also satisfy condition 3, which is called the

symmetry condition.

Example 2.1. [9] The ordinary differential equation (ODE)

dy

dx
= 0 (2.1.1)
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has a symmetry

Tα : (x, y)→ (x̄, ȳ) = (x, y + α), α ∈ R

The transformation is a translation in y by α.

• Tα preserves the structure, that is it preserves the distance between two points

of the objects (solution curves).

• Tα is a smooth transformation of the plane and is invertible if its Jacobian is

nonzero, so we consider the condition x̄xȳy−x̄yȳx 6= 0 (the inverse of translation

by α is a translation by −α)

• Tα maps a point (x, y) on one solution curve to point (x̄, ȳ) on another solution,

therefore

dȳ

dx̄
= 0 when

dy

dx
= 0

Fig. 2.7: The transformation is a translation in y by α

Definition 2.3. [10] A group is a set H together with a group operation called group

multiplication such that the following axioms are satisfied:

• Closure: hi ∈ H and hj ∈ H, then hi ∗ hj ∈ H.

• Associativity: For all hi ∈ H, hj ∈ H, hk ∈ H, then (hi∗hj)∗hk = hi∗(hj ∗hk).

• Identity: There is a group operation I, called the identity operator with the

property that (hi ∗ I) = (I ∗ hi) = hi.

• Inverse: For each hi in H there is an inverse, denoted by h−1
i such that (hi ∗

h−1
i ) = (h−1

i ∗ hi) = I.
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Theorem 2.1. [7] Let H be the set of all symmetries of a geometrical object then H

is a group under composition of the transformation.

Proof. Let Tσ and Tα be two symmetries of an object then the composite transfor-

mations TσTα, and TαTσ are symmetries of this object, because they are invertible

and they keep the object unchanged.

The trivial symmetry denoted by T0 is the identity map, that is, for any Tα ∈ H,

TαT0 = T0Tα = Tα.

And for any Tα ∈ H, the transformation that reverts the object to its original state,

is the inverse of a transformation, that is,

TαT
−1
α = T−1

α Tα = T0.

It’s clear that, composition of transformations is associative, so H is group. �

Definition 2.4. (Lie Group)

Let (x, y) and (ϕ(x, y, α), ψ(x, y, α)) be two points in the Euclidean plane, and for

α in R, let Tα : (x, y) 7→ (ϕ(x, y, α), ψ(x, y, α)) be a transformation, depending on

the parameter α, that takes point (x, y) to point (ϕ(x, y, α), ψ(x, y, α)). We say the

set of transformations Tα is a (additive) Lie group H if the following conditions are

satisfied:

1. Tα is one to one, that is we assume that ϕ(x, y, α) and ψ(x, y, α) are function-

ally independent i.e., Jacobian does not vanish.∣∣∣∣∣ϕx ϕy

ψx ψy

∣∣∣∣∣ 6= 0

Also, Tα is onto that is, it is a transformation that carries any point (x, y) in

the (x, y)-plane into a new position (x̄, ȳ) such that (x̄, ȳ) = Tα(x, y).

2. Let Tα1 and Tα2 be transformations then

Tα1 ◦ Tα2 = Tα1+α2
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that is,

Tα1(ϕ(x, y, α2), ψ(x, y, α2)) = (ϕ(x, y, α1 + α2), ψ(x, y, α1 + α2))

= Tα1+α2

3. T0 is the identity transformation. That is,

T0 : (x, y) 7→ (ϕ(x, y, 0), ψ(x, y, 0)) = (x, y)

It can be written as

T0(x, y) = (x, y) = I

4. For each α1 there exists a unique α2 = −α1 such that Tα2 ◦ Tα1 = T0 = I.

That is,

Tα2(ϕ(x, y, α1), ψ(x, y, α1)) = (ϕ(x, y, α1 − α1), ψ(x, y, α1 − α1))

= (ϕ(x, y, 0), ψ(x, y, 0))

= T0

= I

In addition to these four group properties, (ϕ(x, y, α), ψ(x, y), α) is infinitely

differentiable with respect to (x, y) and analytic with respect to α, we say H is a

one-parameter Lie group or a Lie point transformation. For example, the infinite

set of symmetries is a one-parameter Lie group.

Example 2.2. Consider the transformation

Tα : (x, y) 7→ (x+ α, y − α)

1. Tα is one to one since ∣∣∣∣∣ϕx ϕy

ψx ψy

∣∣∣∣∣ =

∣∣∣∣∣1 0

0 1

∣∣∣∣∣ = 1 6= 0

Also Tα is onto since any point (x, y) in the (x, y)-plane is mapped into a new

position (x̄, ȳ) such that

(x̄, ȳ) = Tα(x̄− α, ȳ + α)
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2. Let Tα1 and Tα2 be transformations then

Tα2 ◦ Tα1 = Tα2(x+ α1, y − α1)

= (x+ α1 + α2, y − α1 − α2)

= (x+ (α1 + α2), y − (α1 + α2))

= Tα1+α2

3. T0 is the identity transformation since

T0 : (x, y) 7→ (x+ 0, y − 0) = (x, y)

So

T0(x, y) = (x, y) = I

4. For each α1 there exists a unique α2 = −α1 such that

Tα2 ◦ Tα1 = Tα2(x+ α1, y − α2)

= (x+ α1 + α2, y − α1 − α2)

= (x, y)

= T0

= I

So the transformation Tα is a Lie group.

2.1.2 Symmetries of Differential Equations

A transformation of a differential equation is a symmetry if every solution of the

transformed equation is a solution of the original equation and vice versa.

Definition 2.5. [9] Consider the following transformation

Tα : xs 7→ x̄s(x1, · · · , xN ;α), s = 1, · · · , N.

where α is a real parameter. Then Tα is one-parameter local Lie group if the following

conditions are satisfied:
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1. T0 is the trivial symmetry, so that x̄s = xs when α = 0.

2. Tα is a symmetry for every α in some neighbourhood of zero.

3. TαTβ = Tα+β for every α, β sufficiently close to zero.

4. Each x̄s may be represented by a Taylor series in α (in some neighbourhood of

α = 0), so

x̄s(x1, · · · , xN ;α) = xs + αξs(x1, · · · , xN) +O(α2), s = 1, · · · , N.

The term“local” is used because the conditions need only apply in some neigh-

bourhood of α = 0. Also, the maximum size of the neighbourhood may depend on

xs, s = 1, · · · , N . A local Lie group may not be a group, it needs only satisfy the

group axioms for sufficiently small parameter values.

From condition 2 we have T−1
α = T−α when |α| is sufficiently small.

A one parameter Lie group of symmetries of a differential equation will depend con-

tinuously on the parameter. For simplicity, we call symmetries that belong to a one

parameter local Lie group, Lie symmetries.

Lie groups may not necessary be defined over the entire real number plane. We

will be dealing with local groups, that is, the group action may not be defined over

the whole plane. The following example illustrates this:

Example 2.3. [9] The Riccati equation

dy

dx
=
y + 1

x
+
y2

x3
(2.1.2)

has a symmetry

Tα : (x, y) 7→ (x̄, ȳ) = (
x

1− αx
,

y

1− αx
) (2.1.3)

which is defined only if α < 1
x

when x > 0 and α > 1
x

when x < 0. If α = 1
x

then

the transfomation is undefined. If α = 0 then

(x̄, ȳ) = (x, y)
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which is the identity transformation. Therefore, the interval on which Tα is defined

must include the origin. If x > 0 and α > 1
x

then the identity is not included in this

interval. Similarly, if x < 0 and α < 1
x

then the origin is not included. Therefore,

in order for the group to have an identity, it can only be defined when α < 1
x

for

x > 0 and α > 1
x

for x < 0. This means that, for a fixed α, the domain of Tα is

− 1
α
< x < 1

α
and y ∈ R. The range is − 1

2α
< x̄ and ȳ ∈ R.

The symmetry Tα defined by (2.1.3) satisfies the conditions:

1. Tα is one to one, if (x1, y1) and (x2, y2) are both mapped to the same point

(x̄, ȳ) then

x̄ =
x1

1− αx1

=
x2

1− αx2

(2.1.4)

Then,

x1(1− αx2) = x2(1− αx1)

x1 − αx1x2 = x2 − αx2x1

we have

x1 = x2

Similarly,

ȳ =
y1

1− αx1

=
y2

1− αx2

we have

y1 = y2

Also Tα is onto since if

x̄ =
x

1− αx
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Then

x = x̄− αx̄x

we have

x =
x̄

1 + αx̄

and consider

ȳ =
y

1− αx

Then

y = ȳ

(
1− αx̄

1 + αx̄

)
=

ȳ

1 + αx̄

Therefore, there is a point (x, y) that corresponds to every point (x̄, ȳ).

2. Let Tα1 and Tα2 be two transformations then

Tα2 ◦ Tα1 = Tα2

(
x

1− α1x
,

y

1− α1x

)
=

( x
1−α1x

1− α2
x

1−α1x

,

y
1−α1x

1− α2
x

1−α1x

)
=

(
x

1− (α1 + α2)x
,

y

1− (α1 + α2)x

)
= Tα1+α2

The domain of this composition is − 1
α1+α2

< x < 1
α1+α2

and y ∈ R and the

range is − 1
2(α1+α2)

< x̄ and ȳ ∈ R.

3. T0 is the identity transformation since

T0 : (x, y) 7→ (x̄, ȳ) = (
x

1− 0
,

y

1− 0
) = (x, y)
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4. For all α1 ∈ R there exists a unique α2 = −α1 such that

Tα2 ◦ Tα1 = Tα2

(
x

1− α1x
,

y

1− α1x

)
=

( x
1−α1x

1− α2
x

1−α1x

,

y
1−α1x

1− α2
x

1−α1x

)
=

(
x

1− (α1 − α1)x
,

y

1− (α1 − α1)x

)
= (x, y)

= T0

= I

So (2.1.3) is a Lie group defined only when α < 1
x

if x > 0 and α > 1
x

if x < 0.

2.1.3 The Symmetry Condition

Consider the first-order differential equation of the form

dy

dx
= ω(x, y) (2.1.5)

The symmetry condition is important to find any symmetry that maps the set

of solution curves in the (x, y) plan to an identical set of curves in the (x̄, ȳ) plane.

So the symmetry equation for (2.1.5) is

dȳ

dx̄
= ω(x̄, ȳ) when

dy

dx
= ω(x, y) (2.1.6)

We can write this condition using the total derivative operator

dȳ

dx̄
=
Dxȳ

Dxx̄
=
ȳx + dy

dx
ȳy

x̄x + dy
dx
x̄y

= ω(x̄, ȳ) when
dy

dx
= ω(x, y) (2.1.7)

where the total derivative operator is

Dx =
∂

∂x
+
dy

dx

∂

∂y
+
d2y

dx2

∂

∂y′
+ · · ·
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From equation (2.1.5), we get

Dxȳ

Dxx̄
=
ȳx + ω(x, y)ȳy
x̄x + ω(x, y)x̄y

= ω(x̄, ȳ) (2.1.8)

Example 2.4. [9] The differential equation

dy

dx
= y2e−x + y + ex (2.1.9)

has a symmetry

(x̄, ȳ) = (x+ 2α, ye2α) (2.1.10)

we substitute equation (2.1.9) into the symmetry condition, we get

ȳx+

(
y2e−x + y + ex

)
ȳy

x̄x+

(
y2e−x + y + ex

)
x̄y

= ω(x̄, ȳ) (2.1.11)

where

ȳx = 0

ȳy = e2α

x̄x = 1

x̄y = 0

So

(y2e−x + y + ex)e2α = ω(x̄, ȳ) (2.1.12)

On the left hand side of equation (2.1.12), we have

(y2e−x + y + ex)e2α = y2e−xe2α + ye2α + exe2α

= y2e−xe2α e
2α

e2α
+ ye2α + exe2α

= ȳ2e−x̄ + ȳ + ex̄

= ω(x̄, ȳ)
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On the right hand side of equation (2.1.12), we have

ω(x̄, ȳ) = ȳ2e−x̄ + ȳ + ex̄

= y2e4αe−x−2α + ye2α + ex+2α

= y2e−xe2α + e2α + exe2α

So the symmetry condition is satisfied and (2.1.10) is a symmetry of equation (2.1.9).

Example 2.5. Consider the Riccati equation

dy

dx
= xy2 − 2y

x
− 1

x3
, x 6= 0 (2.1.13)

has a symmetry

(x̄, ȳ) = (eαx, e−2αy) (2.1.14)

we substitute equation (2.1.13) into the symmetry condition, we get

ȳx+

(
xy2 − 2y

x
− 1

x3

)
ȳy

x̄x+

(
xy2 − 2y

x
− 1

x3

)
x̄y

= ω(x̄, ȳ) (2.1.15)

where

ȳx = 0

ȳy = e−2α

x̄x = eα

x̄y = 0

So (
xy2 − 2y

x
− 1

x3

)
e−2α

eα
= ω(x̄, ȳ) (2.1.16)
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On the left hand side of equation (2.1.16), we have(
xy2 − 2y

x
− 1

x3

)
e−2α

eα
=
xy2e−2α

eα
−

2y
x
e−2α

eα
−

1
x3
e−2α

eα

=
xy2e−2α

eα
eα

eα
− 2ȳ

x̄
− 1

e3αx3

= x̄ȳ − 2ȳ

x̄
− 1

x̄3

= ω(x̄, ȳ)

On the right hand side of equation (2.1.16), we have

ω(x̄, ȳ) = x̄ȳ2 − 2ȳ

x̄
− 1

x̄3

= eαxe−4αy − 2e−2αy

eαx
− 1

e3αx3

= xye−3α − 2y

x
e−3α − 1

x3
e−3α

= (xy − 2y

x
− 1

x3
)e−3α

So the symmetry condition is satisfied and (2.1.14) is a symmetry of equation

(2.1.13).

2.1.4 A Change of Coordinates

Any ODE that has a symmetry of the form

(x̄, ȳ) = (x, y + α)

can be reduced to quadrature. This means that the differential equation can be

solved by an integrating technique. For all α in some neighbourhood of zero, the

symmetry condition reduces to

ω(x, y) = ω(x, y + α) (2.1.17)
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Differentiate equation (2.1.17) with respect to α at α = 0

∂

∂α
ω(x, y) =

∂

∂α
ω(x, y + α)

0 =
∂ω

∂x

∂x

∂α
+
∂ω

∂y

∂y

∂α

From equation (2.1.17), we get

∂x

∂α
= 0

and

∂y

∂α
= 1

So

0 =
∂ω

∂y

Thus the original ODE is a function of x only and then

dy

dx
= ω(x)

and

y =

∫
ω(x)dx+ c

While a symmetry of the form in Equation (2.1.17) does not exist in cartesian

coordinates for all differential equations, it is possible to find such a symmetry in a

different coordinate system.

Example 2.6. Consider the ODE

dy

dx
=
y3 + x2y − y − x
xy2 + x3 + y − x

(2.1.18)

Equation (2.1.18) is difficult to solve in cartesian coordinates, to solve it we rewrite

the equation in terms of polar coordinates. Let

x = r cos θ, y = r sin θ (2.1.19)
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then

dx =
∂x

∂r
dr +

∂x

∂θ
dθ = cos θdr − r sin θdθ (2.1.20)

and

dy =
∂y

∂r
dr +

∂y

∂θ
dθ = sin θdr + r cos θdθ (2.1.21)

Substituting (2.1.19) into (2.1.18), we get

dy

dx
=
r3 sin3 θ + r3 cos2 θ sin θ − r sin θ − r cos θ

r3 cos θ sin2 θ + r3 cos3 θ + r sin θ − r cos θ

=

r3 sin θ

(
sin2θ + cos2 θ

)
− r sin θ − r cos θ

r3 cos θ

(
sin2 θ + cos2 θ

)
+ r sin θ − r cos θ

=
r3 sin θ − r sin θ − r cos θ

r3 cos θ + r sin θ − r cos θ

=
r2 sin θ − sin θ − cos θ

r2 cos θ + sin θ − cos θ

=
sin θ(r2 − 1)− cos θ

cos θ(r2 − 1) + sin θ
(2.1.22)

Substituting (2.1.20) and (2.1.21) into (2.1.22), we get

dy

dx
=

sin θdr + r cos θdθ

cos θdr − r sin θdθ
=

sin θ(r2 − 1)− cos θ

cos θ(r2 − 1) + sin θ

Cross multiplication this equation, we get(
sin θdr + r cos θdθ

)(
cos θ(r2 − 1) + sin θ

)
=

(
cos θdr − r sin θdθ

)(
sin θ(r2 − 1)− cos θ

)
Solving this equation to get dr

dθ

sin θ cos θ(r2 − 1)dr + sin2 θdr + r cos2 θ(r2 − 1)dθ + r cos θ sin θdθ

= cos θ sin θ(r2 − 1)dr − cos2 θdr − r sin2 θ(r2 − 1)dθ + r sin θ cos θdθ

So

sin2 θdr + r cos2 θ(r2 − 1)dθ = − cos2 θdr − r sin2 θ(r2 − 1)dθ

sin2 θdr + cos2 θdr = −r cos2 θ(r2 − 1)dθ − r sin2 θ(r2 − 1)dθ

dr = −r
(

cos2 θ(r2 − 1)dθ + sin2 θ(r2 − 1)

)
dθ
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we have

dr

dθ
= −r(r2 − 1)

(
cos2 θ + sin2 θ

)
= r(1− r2) (2.1.23)

This equation is separable in this coordinate system∫
dr

r(1− r2)
=

∫
dθ

we have ∫
1

r
dr − 1

2

∫
1

1 + r
dr +

1

2

∫
1

1− r
dr = θ

So

ln r − 1

2
ln(1 + r)− 1

2
ln(1− r) = θ

ln
r√

(1− r2)
= θ

Equation (2.1.23) has the symmetry

(r̄, θ̄) = (r, θ + α) (2.1.24)

The symmetry condition for (2.1.24) is

dr̄

dθ̄
=
r̄θ + dr

dθ
r̄r

θ̄θ + dr
dθ
θ̄r

where

r̄r = 1

r̄θ = 0

θ̄θ = 1

θ̄r = 0

we have

dr̄

dθ̄
= r(1− r2)

So the symmetry condition is satisfied. Figure (2.8) shows some of the solution

curves for Equation (2.1.23). The solution curves are rotational symmetries. When

written in polar coordinates, the symmetry for Equation (2.1.23) indicates that the

rotational symmetries are translations in θ.
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Fig. 2.8: Solution curves of equation (2.1.23).

2.1.5 Orbits

The following definition is important for solving differential equation by using sym-

metry methods.

Definition 2.6. [9] Consider a particular point (x, y) and the action of additive Lie

group

Tα : (x, y) 7→ (x̄, ȳ) = (x̄(x, y;α), ȳ(x, y;α))

As α ∈ R, the point (x̄, ȳ) moves in the plane along a continuous curve. This curve

is called the orbit of (x, y) under the group. If the Lie group is a nontrivial symmetry

group of a differential equation, then an orbit of the group takes a continuous path

transverse to solution curves of the differential equation dy
dx

= ω(x, y). An orbit of

solution curves is a continuous family. Along this orbit, changes in α map solution

curves to other solution curves.

Example 2.7. In example (2.1) the orbit of a point on a solution curve of this

differential equation are vertical lines under the symmetry. For instance, the orbit

of the point (1, 0) includes {(1, 1), (1, 2), · · · } (see figure 2.9).
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Fig. 2.9: Solutions to Equation (2.1) and orbit of the point (1, 0).

2.1.6 Tangent Vectors

Dxȳ
Dxx̄

= ω(x̄, ȳ) is nonlinear PDE that can be solved by linearizing it to find the

coordinate system. The tangent vectors to an orbit under a given symmetry are

important to determine the new coordinate system. The tangent vectors to the

orbit at any point (x̄, ȳ) are described by the tangent vector in the x-direction,

denoted by ξ(x̄, ȳ) and the tangent vector in the y-direction, denoted by η(x̄, ȳ).

Therefor,

dx̄

dα
= ξ(x̄, ȳ)

and

dȳ

dα
= η(x̄, ȳ)

At the initial point (x, y), when α equals 0, we have(
dx̄

dα

∣∣∣∣
α=0

,
dȳ

dα

∣∣∣∣
α=0

)
= (ξ(x, y), η(x, y)) (2.1.25)

The tangent vectors are useful for finding invariant solution curves. An invariant

solution curve is always mapped to itself under a symmetry. The points on an

invariant solution curve are mapped either to themselves or other points on the

same curve. Therefore, the orbit of a noninvariant point on an invariant solution
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curve is the solution curve itself. When a solution curve is invariant, this means

that the derivative at the point (x, y) will point in the same direction as the tangent

vectors to the orbit. As α varies, the point is mapped to another point on the same

solution curve, rather than a different solution curve. Therefore,

dy

dx
=
η(x, y)

ξ(x, y)

To find the tangent vector field of the group of orbits, we expand x̄, ȳ and

ω(x̄, ȳ) in Taylor series expansion around α = 0

x̄ = x+ α dx̄
dα
|α=0 +O(α2) = x+ αξ(x, y) +O(α2) (2.1.26)

ȳ = x+ α dx̄
dα
|α=0 +O(α2) = y + αη(x, y) +O(α2) (2.1.27)

ω(x̄, ȳ) = ω(x, y) + α
dω(x̄, ȳ)

dα
|α=0 +O(α2)

= ω(x, y) + α

(
ωx(x, y)ξ(x, y) + ωy(x, y)η(x, y)

)
+O(α2) (2.1.28)

where O(α2) describes the error function for the Taylor series expansions of x̄,

ȳ, and ω(x̄, ȳ) we ignore terms of α2 or higher. For simplicity, ξ(x, y) will be denoted

merely as ξ and η(x, y) as η.

From equation (2.1.8) we calculate Dxx̄ and Dxȳ by using Taylor series expan-

sion of x̄ and ȳ respectively, we have

Dxx̄ = Dx(x+ αξ +O(α2))

= 1 + αξx + y′αξy +O(α2)

= 1 + α(ξx + ωξy) +O(α2)

(2.1.29)
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and

Dxȳ = Dx(y + αη +O(α2))

= αηx + y′(1 + αηy) +O(α2)

= ω + α(ηx + ωηy) +O(ε2)

(2.1.30)

Substituting (2.1.29) and (2.1.30) into (2.1.8), we get

ω + α(ηx + ωηy)

1 + α(ξx + ωξy)
= ω + α(ωxξ + ωyη)

Multiplying by the denominator

ω + α(ηx + ωηy) = (1 + α(ξx + ωξy))(ω + α(ωxξ + ωyη))

Disregarding terms of α2 or higher, we obtain

ηx + (ηy − ξx)ω − ξyω2 − (ξωx + ηωy) = 0 (2.1.31)

This equation is called the linearized symmetry condition for first order differential

equations ODE. This condition is necessary to solve the ODE but sometimes it

is difficult to solve so we can use an appropriate ”anatzs”, that is, to place some

additional constraints upon ξ and η.

The linearized symmetry condition can be rewritten in terms of the reduced

characteristic, Q is defined by Hydon [9] as

Q(x, y, y′) = η − y′ξ

but dy
dx

= ω(x, y), we have

Q = η − ω(x, y)ξ

as follows

Qx + ω(x, y)Qy − ωy(x, y)Q = 0 (2.1.32)
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If Q satisfies (2.1.32) then each solution of (2.1.32) corresponds to infinitely many

Lie groups. It follows that

(ξ, η) = (ξ,Q+ ω(x, y)ξ)

is a tangent vector field of a one-parameter group, for any function ξ. If Q = 0 then

every solution curve is invariant under that symmetry (trivial symmetry). However,

if not then the nontrivial symmetries can be found from (2.1.32) by using the method

of characteristics. The characteristic equations are

dx

1
=

dy

ω(x, y)
=

dQ

ωy(x, y)Q
(2.1.33)

Example 2.8. In example (2.5) the tangent vectors are

ξ(x, y) = x

and

η(x, y) = −2y

The reduced characteristic is

Q(x, y) = −2y − (xy2 − 2y

x
− 1

x3
)x (2.1.34)

= −x2y2 +
1

x2
(2.1.35)

Q(x, y) = 0 when y = ± 1
x2

. Therefore, the symmetry (2.1.14) acts nontrivially on

all the solution curves of (2.1.13) except for y = 1
x2

and y = − 1
x2
.

2.1.7 Canonical Coordinats

The aim of changing to a different coordinate system is to make a differential equa-

tion easier to solve. If the ODE (2.1.5) has a symmetry of the form (x, y) = (x, y+α),

it can be solved by an integrating technique. However, not all differential equations
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have a symmetry of this form in cartesian coordinates. Therefore, one can change

to a new coordinate system in (r(x, y), s(x, y)) to get a symmetry

Tα : (r, s) 7→ (r̄, s̄) = (r, s+ α)

The tangent vectors at (r, s) when α = 0 are

dr̄

dα

∣∣∣∣
α=0

= 0

and

ds̄

dα

∣∣∣∣
α=0

= 1

Applying total derivative with respect to α at α = 0, we obtain

dr̄

dα

∣∣∣∣
α=0

=
dr̄

dx

dx

dα

∣∣∣∣
α=0

+
dr̄

dy

dy

dα

∣∣∣∣
α=0

=
dr

dx
ξ(x, y) +

dr

dy
η(x, y) = 0 (2.1.36)

and

ds̄

dα

∣∣∣∣
α=0

=
ds̄

dx

dx

dα

∣∣∣∣
α=0

+
ds̄

dy

dy

dα

∣∣∣∣
α=0

=
ds

dx
ξ(x, y) +

ds

dy
η(x, y) = 1 (2.1.37)

This equation can be written as

rxξ(x, y) + ryη(x, y) = 0 (2.1.38)

and

sxξ(x, y) + syη(x, y) = 1 (2.1.39)

Equations (2.1.38) and (2.1.39) are first order linear partial differential equa-

tions for r(x, y) and s(x, y), respectively. They can be solved by the method of
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characteristics. Consider equation (2.1.38) in r(x, y), the solution of (2.1.38) can be

represented as surfaces r(x, y) that satisfy

〈rx, ry,−1〉 · 〈ξ(x, y), η(x, y), 0〉 = 0

We know that the normal to the surface r(x, y) is given by 〈rx, ry,−1〉. Therefore, if

the vector 〈ξ(x, y), η(x, y), 0〉 is perpendicular to 〈rx, ry,−1〉 at each point then the

vector 〈ξ(x, y), η(x, y), 0〉 lies in the tangent plane to the surface r(x, y).

Consider a curve C parameterized by t such that at each point on the curve

C, the vector 〈ξ(x(t), y(t)), η(x(t), y(t)), 0〉 is tangent to the curve. The curve C

satisfies the following system of ODEs:

dx

dt
= ξ(x(t), y(t)),

dy

dt
= η(x(t), y(t)),

dr

dt
= 0

So the characteristic equations for (2.1.38) are

dx

ξ(x, y)
=

dy

η(x, y)
(2.1.40)

To find the characteristic equations for equation (2.1.39), we have

dx

dt
= ξ(x(t), y(t)),

dy

dt
= η(x(t), y(t)),

ds

dt
= 1 (2.1.41)

So

dx

ξ(x, y)
=

dy

η(x, y)
=
ds

1
(2.1.42)

Now consider the function φ(x, y), the first integral of a differential equation:

dy

dx
= f(x, y) (2.1.43)

The first integral of an ODE (2.1.43) is a nonconstant function φ(x, y) whose value is

constant on any solution y = y(x) of the ODE (2.1.43). Applying the total derivative

operator to φ(x, y), we get

φx + f(x, y)φy = 0, φy 6= 0 (2.1.44)
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The general solution of (2.1.43) is

φ(x, y) = c

If we divide Equation (2.1.36) by ξ(x, y), we obtain

dr

dx

ξ(x, y)

ξ(x, y)
+
dr

dy

η(x, y)

ξ(x, y)
= 0

so

rx +
dr

dy
ry = 0

Comparing this equation with equation (2.1.44), we find that r(x, y) is a first integral

of

dy

dx
=
η(x, y)

ξ(x, y)
, ξ(x, y) 6= 0 (2.1.45)

Therefore, in order to find r, one can solve Equation (2.1.45). Because r(x, y) is a

first integral of Equation (2.1.45)

r(x, y) = c = φ(x, y), where c is constant

To find s, one can use equation (2.1.42), we have

s =

∫
dy

η(x, y)
=

∫
dx

ξ(x, y)

There is a special case when ξ(x, y) = 0. If ξ(x, y) = 0 and η(x, y) 6= 0 then

(r, s) =

(
x,

∫
dy

η(x, y)

)∣∣∣∣
r=x

Example 2.9. In example (2.3) the one parameter Lie group is

(x̄, ȳ) =

(
x

1− αx
,

y

1− αx

)
(2.1.46)

From equation (2.1.25) the tangent vectors is

ξ(x, y) =
x2

1− αx

∣∣∣∣
α=0

= x2
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and

η(x, y) =
xy

1− αx

∣∣∣∣
α=0

= xy

So

(ξ(x, y), η(x, y)) = (x2, xy)

From equation (2.1.45) we substitute ξ(x, y) and η(x, y) to find r(x, y)

dy

dx
=
y

x

This equation is separable ∫
dy

y
=

∫
dx

x

we get

ln y = lnx+ c1

which simplifies to

y = cx, where c = ec1

when we solve for c, we get

c = r(x, y) =
y

x

using equation (2.1.42) to find s, we get

s(x, y) =

∫
dx

x2
=
−1

x

So the canonical coordinates are

(r(x, y), s(x, y)) =

(
y

x
,
−1

x

)
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2.1.8 A New Way to Solve Differential Equations

To solve a given ODE, we write the differential equation of the canonical coordinates

in terms r and s. Then, we can set the solution back into cartesian coordinates. To

find ds
dr

, apply the total derivative operator to get

ds

dr
=
sx + ω(x, y)sy
rx + ω(x, y)ry

(2.1.47)

This equation is written in terms of x and y. To write it in terms of r and s solve

the canonical r(x, y) and s(x, y) for x and y then simplify and translate the solution

into the cartesian coordinate.

Example 2.10. In example (2.4), the linearized symmetry condition is

ηx + (ηy − ξx)ω − ξyω2 − ξ(−e−xy2 + ex)− η(2ye−x + 1) = 0

It is necessary to solve this equation for ξ and η. We can make an ansatz((trial

solution)) about ξ and η. Suppose ξ = 1 and η is a function of y only. Therefore,

ηy(y
2e−x + y + ex)− ξ(−e−xy2 + ex)− η(2ye−x + 1) = 0

Simplifying this equation, we get

e−xy(ηyy + y − 2η) + ex(ηy − 1) + ηyy − η = 0

we have

ηyy + y − 2η = 0 (2.1.48)

ηy − 1 = 0 (2.1.49)

ηyy − η = 0 (2.1.50)

Equation (2.1.49) can be solved by separation of variable, we obtain

η = y
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Now we can find the canonical coordinates r and s. To find r solve equation (2.1.45),

we get

dy

dx
=
y

1
= y

we have

ln y = x+ c1, where c1 ∈ R

Therefore,

y = cex, where c = ec1 ∈ R

So

r =
y

ex

To find s, solve equation (2.1.42), we get

s =

∫
dx = x

Therefore, the canonical coordinates are

(r, s) =

(
y

ex
, x

)
Substituting the canonical coordinates into equation (2.1.47)

ds

dr
=

1

−ye−x + e−x(y2e−x + y + ex)

=
1

e−2xy2 + 1

Therefore,

ds

dr
=

1

r2 + 1

s =

∫
1

r2 + 1
dr = arctan(r)

we have

x = arctan

(
y

ex

)
and

y = tan(x)ex
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2.1.9 Infinitesimal Generator

The symmetry method can be used to solve first order differential equations. Many

higher order differential equations can be reduced in order with the use of infinites-

imal generators. For a one parameter Lie symmetry group Tα : (x, y) 7→ (x̄, ȳ) there

exist tangent vectors ξ and η. The infinitesimal generator for the symmetry is the

partial differential operator

X = ξ
∂

∂x
+ η

∂

∂y

Example 2.11. [9] The following symmetry

(x̄, ȳ) = (x, eαxy)

has an infinitesimal generator that has the tangent vectors:

ξ(x, y) = 0

and

η(x, y) = xyeαx

So the infinitesimal generator for this symmetry is

X = xyeαx
∂

∂y

2.1.10 Infinitesimal Generator in Canonical Coordinates

Let F (u, v) be an arbitrary smooth function. The infinitesimal generator X acts on

F as

XF (u, v) = XF (u(x, y), v(x, y))

By the chain rule, we have

XF (u, v) = ξ(uxFu + vxFv) + η(uyFu + vyFv)



2. Preliminaries 32

we get

XF (u, v) = Fu(ξ(ux + ηuy)) + Fv(ξvx + ηvy)

= (Xu)Fu + (Xv)Fv

but F (u, v) is arbitrary function. Then the infinitesimal generator in the coordinates

u and v are

X = (Xu)
∂

∂u
+ (Xv)

∂

∂v

If (u, v) = (r, s) then

X = (Xr)
∂

∂r
+ (Xs)

∂

∂s
(2.1.51)

since Xr = 0 and Xs = 1, we get X = ∂
∂s

. The infinitesimal generator can be

extended to equation with more variables. Suppose that G(r, s) is a smooth function

and let

F (x, y) = G(r(x, y), s(x, y)) (2.1.52)

and therefore

F (x̄, ȳ) = G(r̄, s̄) = G(r, s+ α)

Applying Taylor’s theorem and (2.1.51), we get

F (x̄, ȳ) = G(r, s) +Gs(r, s)(s+ α− s) +
Gss(r, s)

2!
(s+ α− s)2 + · · · =

∞∑
j=0

αj

j!

∂j

∂sj
G(r, s)

since X = ∂
∂s

in the canonical coordinates r and s, we can write

F (x̄, ȳ) =
∞∑
j=0

αj

j!
XjG(r, s)

from (2.1.52), we get

F (x̄, ȳ) =
∞∑
j=0

αj

j!
XjF (x, y) (2.1.53)
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Equation (2.1.53) can be written as

F (x̄, ȳ) =
∞∑
j=0

eαxXjF (x, y)

since the Taylor series expansion for ex is
∑∞

j=0
xj

j!
. This result can be generalized to

any number of variables. Suppose that there are L variables, z1, · · · , zL, and that

the Lie symmetries are

z̄s(z1, · · · , zL;α) = zs + αζs(z1, · · · , zL) +O(α2), s = 1, · · · , L

where ζs = dz̄s

dα
|α=0. The infinitesimal generator of the one-parameter Lie group is

X = ζs(z1, · · · , zL)
∂

∂zs

2.1.11 Lie Symmetries of Higher-Order Differential Equations

In this section, we want to describe the method for finding Lie symmetries of general

ordinary differential equations. Consider kth-order ODE of the form

yk = ω(x, y, y′, y′′, · · · , y(k−1)), y(p) =
dpy

dxp
(2.1.54)

where ω is locally smooth function. A symmetry of (2.1.54) is a diffeomorphism

that maps the set of solutions of the ODE to itself. The action of T maps smooth

curve to smooth curve.

T : (x, y, y′, · · · , y(k)) 7→ (x̄, ȳ, ȳ′, · · · , ȳ(k)) (2.1.55)

where

ȳ(p) =
dpȳ

dx̄p
, p = 1, · · · , k (2.1.56)

This mapping is called the kth prolongation of T . The function ȳ(p) can be solved

recursively by using the chain rule

ȳ(p) =
dȳ(p−1)

dx̄
=
Dxȳ

(p−1)

Dxx̄
, ȳ(0) ≡ ȳ (2.1.57)
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where Dx is the total derivative with respect to x defined by

Dx =
∂

∂x
+
dy

dx

∂

∂y
+
d2y

dx2

∂

∂y′
+ · · ·

So the symmetry condition for the ODE (2.1.54) is

ȳ(k) = ω(x̄, ȳ, ȳ′, · · · , ȳ(k−1)) (2.1.58)

when (2.1.54) holds and where the functions ȳ(p) are defined by (2.1.56).

Since the symmetry condition (2.1.57) is nonlinear, Lie symmetry can be obtained

by linearizing (2.1.57) about ε = 0.

Example 2.12. [9] The second-order ODE

y′′ = 0, x > 0 (2.1.59)

has a symmetry

(x̄, ȳ) = (
1

x
,
y

x
) (2.1.60)

From (2.1.57), we get

ȳ′′ =
dȳ′

dx̄
=
Dxȳ

′

Dxx̄
(2.1.61)

where

ȳ′ =
dȳ

dx̄
=
Dxȳ

Dxx̄
=
Dx(

y
x
)

Dx(
1
x
)

(2.1.62)

but

Dx(
y

x
) =
−y + y′x

x2

Dx(
1

x
) =
−1

x2
(2.1.63)

Substituting into equation (2.1.61), we obtain

ȳ′ =
−y+y′x
x2

−1
x2

= y − y′x (2.1.64)



2. Preliminaries 35

Substituting (2.1.64) into (2.1.61), we get

ȳ′′ =
Dx(y − y′x)

Dx(
1
x
)

=

∂(y−y′x)
∂x

+ y′ ∂(y−y′x)
y

+ y′′ ∂(y−y′x)
∂y′

∂x
1
x

=
−y′ + y′ − y′′x

−1
x2

= y′′x3

so the symmetry condition is satisfied since ȳ′′ = 0 when y′′ = 0.

The general solution of the ODE is

y = c1x+ c2, c1, c2 ∈ R.

is mapped by transformation (2.1.60) to the solution

ȳ =
y

x
=
c1x+ c2

x
= c1 +

c2

x
= c1 + c2x̄

So this symmetry acts on the set of solution curves by interchange the constant of

integration c1 and c2.

The linearized symmetry condition for Lie symmetries is given by the same way

as that for the first-order ODE using a Talyor series expansion. The prolonged Lie

symmetry around α = 0 is

x̄ = x+ αξ +O(ε2)

ȳ = y + αη +O(ε2)

ȳ(p) = y(p) + αη(p) +O(α2), p ≥ 1 (2.1.65)

where η(p) denotes the tangent vector that corresponds to the pth derivative of ȳ.

Substituting (2.1.65) into the symmetry condition (2.1.58), we get

ȳ(k) = ω(x+ αξ +O(α2), y + αη +O(α2), · · · , y(k−1) + αη(k−1) +O(α2))
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Now apply Taylor’s theorem about α = 0, we get

= ω(x, y, · · · , y(k−1)) + α

(
∂ω

∂x̄

∂x̄

∂α
|α=0 +

∂ω

∂ȳ

∂ȳ

∂α
|α=0 + · · ·+ ∂ω

∂ȳ(k−1)

∂ȳ(k−1)

∂α
|α=0

)
+O(α2)

= ω(x, y, · · · , y(k−1)) + α

(
∂ω

∂x
ξ +

∂ω

∂y
η + · · ·+ ∂ω

∂y(k−1)
η(k−1)

)
+O(α2)

= ω(x, y, · · · , y(k−1)) + α

(
ωxξ + ωyη + · · ·+ ωy(k−1)η(k−1)

)
+O(α2) (2.1.66)

when (2.1.54) holds, we have

η(k) = ωxξ + ωyη + · · ·+ ωy(k−1)η(k−1) (2.1.67)

which is called the linearized symmetry condition for kth-order ODE when (2.1.58)

holds. The functional ηp can be solved recursively from (2.1.57), for p = 1 we get

ȳ′ =
Dxȳ

Dxx̂
(2.1.68)

Calculating Dxȳ by using the Taylor series expansion of ȳ:

Dxȳ = Dx(y + αη +O(α2))

= αηx + y′(1 + αηy) +O(α2)

= y′ + α(ηx + y′ηy) +O(α2)

= y′ + αDxη +O(α2) (2.1.69)

Calculating Dxx̄ by using the Taylor series expansion of x̄:

Dxx̄ = Dx(x+ αξ +O(α2))

= 1 + αξx + αy′ξy +O(α2)

= 1 + α(ξx + y′ξy) +O(α2)

= 1 + αDxξ +O(α2) (2.1.70)

substituting (2.1.69) and (2.1.70) into (2.1.68), we have

ȳ′ =
y′ + αDxη +O(α2)

1 + αDxξ +O(α2)
(2.1.71)
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multiplying the right hand side by

1− αDxξ

1− αDxξ

we have

ȳ′ =
(y′ + αDxη)(1− αDxξ) +O(α2)

(1 + αDxξ)(1− αDxξ) +O(α2)

ignore terms of α2 or higher so

ȳ′ = y′ + α(Dxη − y′Dxξ) +O(α2)

so

η(1) = Dxη − y′Dxξ (2.1.72)

For p = k − 1, calculating Dxȳ
(k−1) by using the Taylor series expansion of ȳk:

Dxȳ
(k−1) = Dx(y

(k−1) + αη(k−1) +O(α2))

= αη(k−1)
x + y′αη(k−1)

y + y′′αη
(k−1)
y′ + · · ·+ y(k)(1 + αη

(k−1)

y(k−1)) +O(α2)

= y(k) + αη(k−1)
x + y′αη(k−1)

y + y′′αη
(k−1)
y′ + y(k)αη

(k−1)

y(k−1) +O(α2)

= y(k) + αDxη
(k−1) +O(α2) (2.1.73)

Calculating Dxx̄ by using the Taylor series expansion of x̄:

Dxx̄ = Dx(x+ αξ +O(α2))

= 1 + αξx + y′αξy +O(α2)

= 1 + α(ξx + y′ξy) +O(α2)

= 1 + αDxξ +O(α2) (2.1.74)

substituting (2.1.73) and (2.1.74) into ȳ(k) = Dxȳ(k)

Dxx̄
, we have

ȳ(k) =
y(k) + αDxη

(k−1) +O(α2)

1 + αDxξ +O(α2)
(2.1.75)

multiplying equation (2.1.75) by

1− αDxξ

1− αDxξ
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we have

ȳ(k) =
(y(k) + αDxη

(k−1))(1− αDxξ) +O(α2)

(1 + αDxξ)(1− αDxξ) +O(α2)

ignore terms of α2 or higher, we get

ȳ(k) = y(k) + α(Dxη
(k−1) − y(k)Dxξ) +O(α2)

so

η(k) = Dxη
(k−1) − y(k)Dxξ (2.1.76)

To simplify (2.1.67), we introduce the prolonged infinitesimal generator

Definition 2.7. [9] The infinitesimal generator X(k) is

X(k) = ξ∂x + η∂y + η(1)∂y′ + · · ·+ η(k)∂y(k) (2.1.77)

where X(k) is associated with the tangent vector in the space of variables (x, y, y′, · · · , y(k))

and the coefficient of ∂y(k) is the O(α2) term in the expansion of ȳ(k).

So the Linearized symmetry for kth-order differential equations can be written

as

X(k)

(
y(k) − ω(x, y, y′, · · · , y(k−1))

)
= 0, when (2.1.54) holds.

Definition 2.8. [9] A point transformation is a type of diffeomorphism of the form

(x̄, ȳ) = (x̄(x, y), ȳ(x, y))

Moreover a point symmetry is any point transformation that is also a symmetry.

We restrict our attention to Lie symmetries for which ξ and η depend on x

and y only which are called Lie point symmetries. To find the form of Lie point
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symmetries of an ODE (2.1.54) we find η(p), p = 1, · · · , k and then from (2.1.72)

and (2.1.76), we have

η(1) = Dxη − y′Dxξ

= ηx + y′ηy − y′(ξx − ξyy′)

= ηx + y′(ηy − ξx)− ξy(y′)2 (2.1.78)

To find η(2) we use η(1), we have

η(2) = D(1)
x η − y′′Dxξ

= ηxx + y′ηyx − y′ξxx − ξyx(y′)2 + y′(ηxy + y′ηyy − y′ξxy − ξyy(y′)2 + y′′(ηy − ξx
− 2ξyy

′))− y′′(ξx + ξyy
′)

= ηxx + y′(2ηyx − ξxx) + (y′)2(ηyy − 2ξxy)− ξyy(y′)3 + (ηy − 2ξx − 3ξyy
′)y′′.

(2.1.79)

The number of terms in ηk increases exponentially with k, we can use computer

algebra to recommend for the study of high-order ODEs.

Substituting (2.1.78) and (2.1.79) into (??), we have

η(2) − η(1)ωy′ − ωxξ − ωyη = 0

ηxx + y′(2ηyx − ξxx) + (y′)2(ηyy − 2ξxy)− ξyy(y′)3 + (ηy − 2ξx − 3ξyy
′)y′′ − (ηx + y′(ηy

− ξx)− ξy(y′)2)ωy′ − ωxξ − ωyη = 0 (2.1.80)

Equation (2.1.80) is the linearized symmetry condition for second-order ODE. How-

ever, this equation is complicated to solve. It can be decomposed into a system of

PDEs, which are the determining equations for the Lie point symmetries.

Example 2.13. [9] Consider the simplest second-order ODE

y′′ = 0 (2.1.81)

Since y′′ = 0 so the linearized symmetry condition is

ηxx + y′(2ηyx − ξxx) + (y′)2(ηyy − 2ξxy)− ξyy(y′)3 = 0



2. Preliminaries 40

This equation can be spilt into a system of four equations, called the determining

equations

ηxx = 0 (2.1.82)

2ηyx − ξxx = 0 (2.1.83)

ηyy − 2ξxy = 0 (2.1.84)

ξyy = 0 (2.1.85)

Integrating Equation (2.1.85) with respect to y twice, we get

ξ(x, y) = A(x)y +B(x) (2.1.86)

for arbitrary functions A and B.

Substitution (2.1.86) into (2.1.84)

ηyy = 2A′(x) (2.1.87)

Integrating (2.1.87) with respect to y, we obtain

ηy = 2A′(x)y + C(x) (2.1.88)

Integrating (2.1.87) with respect to y again, we obtain

η(x, y) = A′(x)y2 + C(x)y +D(x)

Substituting ξ(x, y) and η(x, y) into equation (2.1.82) and (2.1.83), we get

ηxx = A′′′(x)y2 + C ′′(x)y +D′′(x) = 0 (2.1.89)

2ηxy − ξxx = 2(2A′′(x)y + C ′(x))− (A′′(x)y +B′′(x)) (2.1.90)

= 3A′(x)y + 2C ′(x)−B′(x) = 0 (2.1.91)
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From equation (2.1.89) and (2.1.90), we obtain

A′′(x) = 0

C ′′(x) = 0

D′′(x) = 0

B′′(x) = 2C ′(x)

So the general solution for A(x), C(x) and D(x) are

A(x) = c1x+ c2

C(x) = c3x+ c4

D(x) = c5x+ c6

where c1, c2, c3, c4, c5 and c6 are constants. The general solution for B(x) is

B′′(x) = 2C ′(x) = 2c3

B′(x) = 2c3x+ c7

B(x) = c3x
2 + c7x+ c8

Substituting A(x), B(x), C(x) and D(x) into ξ(x, y) and η(x, y), we get

ξ(x, y) = A(x)y +B(x)

= c1xy + c2y + c3x
2 + c7x+ c8

and

η(x, y) = A′(x)y2 + C(x)y +D(x)

= c1y
2 + c3xy + c4y + c5x+ c6

So the infinitesimal generator for y′′ = 0 is

X = (c1xy + c2y + c3x
2 + c7x+ c8)∂x + (c1y

2 + c3xy + c4y + c5x+ c6)∂y



3. SYMMETRY METHODS FOR DIFFERENCE EQUATIONS

In this chapter we extend the symmetry method for differential equations to non-

linear difference equations. This method could be used to solve difference equations

after adapting it to this field (see [7], [12]).

A transformation of a difference equation is a symmetry if every solution of the

transformed equation is a solution of the original equation and vice versa.

Example 3.1. Let

Tα : un → ūn = αun, for all α ∈ R− {0},

be a transformation on a linear homogeneous difference equation of order q

αq(n)un+q + αq−1(n)un+q−1 + · · ·+ α0(n)un = 0

Then Tα is a symmetry of the difference equation for all α ∈ R − {0}, since if

U1(n), U2(n), ..., Uq(n) are linearly independent solutions, then the general solution

is

un =

q∑
i=1

ciUi(n).

The transformation Tα maps this solution to

ūn = α

q∑
i=1

ciUi(n) =

q∑
i=1

c̄iUi(n), where c̄i = αci.

for i = 1, 2, · · · , q. So ūn is a solution of the original equation and vice versa. Thus,

Tα is a symmetry for all α ∈ R− {0}.
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Definition 3.1. [6] Let

Γα : x→ x̄(x;α), α ∈ (α0, α1),

where α0 < 0 and α1 > 0, be a transformation, then it’s a one parameter local Lie

group if the following conditions are satisfied

1. Γ0 is the identity map, that is, x̄ = x when α = 0.

2. ΓαΓδ = Γα+δ, ∀ α, δ sufficiently close to 0.

3. Each x̄ can be represented by a Taylor series in α, so

x̄(x;α) = x+ αξ(x) +O(α2).

Example 3.2. [7] Consider the difference equation:

un+1 − un = 0. (3.0.1)

and the transformation

Tα : (n, un)→ (n̄, ūn) = (n, un + α); α ∈ R (3.0.2)

Tα is a one parameter local Lie group, since

1. T0 is the identity map since

T0 : (n, un) 7→ (n̄, ūn) = (n, un)

2. Let Tα : (n, un) 7→ (n, un + α) and Tδ : (n, un) 7→ (n, un + δ) be two transfor-

mations then

TαTδ = Tα(n, un + δ)

= (n, un + δ + α)

= Tα+δ
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3. Each ūn can be represented as a Taylor series in α.

Tα is a symmetry for equation (3.0.1) since the solution of (3.0.1) is

un = c

and every transformation with α 6= 0 maps each solution,

un = c to ūn = c+ α

which can be written as ūn = c̄; c̄ = c+ α. So Tα is a Lie symmetry.

Note that n is a discrete variable that can’t be changed by an arbitrarily small

amount, so every one parameter local Lie group of symmetries must leave n un-

changed. That is, n̄ = n for all Lie symmetries of (3.0.1). The same argument

applies to all difference equations.

We restrict our attention to Lie symmetries for which ūn depends on n and un only,

which are called Lie point symmetries and take the form

n̄ = n, ūn = un + αQ(n, un) +O(α2), (3.0.3)

where Q(n, un) is a function of n and un that depends on the difference equation

and is called a characteristic of the local Lie group.

If we replace n by n+ q in equation (3.0.3) we get

ūn+q = un+q + αQ(n+ q, un+q) +O(α2),

which is called the prolongation formula for Lie point symmetries.

We want to invest symmetries and to use them to obtain exact solutions for

difference equations.

Now consider the effect of changing variables from (n, un) to (n, sn), and as

(3.0.3) is a symmetry for each α sufficiently close to zero, we can apply Taylor’s

theorem about α = 0, to obtain

s̄n = s(n̄, ūn)

= s(n, ūn)

= s(n, un + αQ(n, un) +O(α2))
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Now apply Taylor’s theorem about α = 0, we get

s̄n = s(n, un) + α(
ds

dūn
)(
dūn
dα

) |α=0 +O(α2)

= s(n, un) + αs′(n, un)Q(n, un) +O(α2).

If we denote the characteristic function with respect to (n, sn) by Q̄(n, sn) then we

have:

s̄n = sn + αQ̄(n, sn) +O(α2)

= s(n, un) + αs′(n, un)Q(n, un) +O(α2).

So we get:

Q̄(n, sn) = s′(n, un)Q(n, un). (3.0.4)

The coordinate sn is called the canonical coordinate.

Example 3.3. [7] Consider changing the coordinates from (n, un) to (n, sn), and

symmetries for sn,

(n̄, s̄n) = (n, sn + α), α ∈ R.

Then the characteristic with respect to (n, sn) is Q̄(n, sn) = 1, so by (3.0.4),

s′(n, un)Q(n, un) = 1,

which implies that

s(n, un) =

∫
dun

Q(n, un)
(3.0.5)

Now, as an example if Q(n, un) = un − 1, then the canonical coordinate according

to equation (3.0.5) is

s(n, un) =

∫
dun
un − 1

=

ln(un − 1), |un| > 1

ln(1− un), |un| < 1

In this example, the map from un to sn is not injective; it can’t be inverted from sn

to un except if we specify whether |un| is greater or less than 1.
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3.1 Lie Symmetries of a Given First-Order Difference Equation

In this section we apply Lie symmetry to first order difference equations. This

method depends on transforming the difference equation to a functional equation

then we transform it to a differential equation.

Consider the first order difference equation of the form

un+1 = w(n, un), (3.1.1)

This equation can be solved using a one parameter local Lie group of symmetries.

For any transformation of a difference equation to be a symmetry, the set of

solutions must be mapped to itself so the symmetry condition of equation (3.1.1)

must be satisfied

ūn+1 = w(n̄, ūn) when un+1 = w(n, un). (3.1.2)

From the symmetry condition (3.1.2), we get

w̄(n, un) = w(n̄, ūn)

= w(n, un + αQ(n, un) +O(α2))

= w(n, un) + αw′(n, un)Q(n, un) +O(α2).

Also, we have

w̄(n, un) = ūn+1 = un+1 + αQ(n+ 1, un+1) +O(α2).

So,

Q(n+ 1, un+1) = w′(n, un)Q(n, un). (3.1.3)

This is called the linearized symmetry condition (LSC) for the given difference equa-

tion (3.1.1).

The linearized symmetry condition (3.1.3) is a linear functional equation that could

be difficult to solve.
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We can find the general solution of the linearized symmetry condition if we

can solve the functional equation. But some functional equations can’t be solved.

However, there is no need to find the general solution of the linearized symmetry

condition, as a single non-zero solution of this equation is sufficient to determine

the general solution of the difference equation. For first order difference equations,

a practical approach is to use an ansatz (trial solution) as a general solution of the

linearized symmetry condition. Many physically important Lie point symmetries

have characteristics of the form:

Q(n, un) = t1(n)u2
n + t2(n)un + t3(n), (3.1.4)

where t1(n), t2(n) and t3(n) are functions of n. By substituting (3.1.4) into the

linearized symmetry condition (3.1.3) and comparing powers of un, we obtain the

coefficients t1(n), t2(n) and t3(n).

Now, we know how to find a characteristic of first order difference equations,

the remaining question is how can we use a characteristic to determine the general

solution of the difference equation.

Consider the canonical coordinate (3.0.4), and as in example (3.3) let Q̄(n, un) = 1,

then

sn =

∫
dun

Q(n, un)
.

To use a canonical coordinate to simplify or solve a given difference equation, firstly,

we write the difference equation as a difference equation for sn, then if we can solve

this equation, it remains to write the solution in terms of the original variables.

This happens only if we can invert the map from un to sn . This condition is called

compatibility condition, and sn is called a compatible canonical coordinate.

Example 3.4. [7] Find the general solution

un+1 =
nun + 1

un + n
= ω(n, un), n ≥ 2 (3.1.5)

by using Lie point symmetry?

Solution.

ω′(n, un) =
∂ω(n, un)

∂un
=

n2 − 1

(un + n)2
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then the LSC for equation (3.1.5) is

Q
(
n+ 1,

nun + 1

un + n

)
=

n2 − 1

(un + n)2
Q(n, un)

with the ansatz (3.1.4), we get

t1(n+ 1)u2
n+1 + t2(n+ 1)un+1 + t3(n+ 1) =

n2 − 1

(un + n)2

(
t1(n)u2

n + t2(n)un + t3(n)
)

but un+1 = nun+1

un+n
, so

t1(n+1)
( nun+1

un + n

)2

+t2(n+1)
nun+1

un + n
+t3(n+1) =

n2 − 1

(un + n)2

(
t1(n)u2

n+t2(n)un+t3(n)
)

multiplying by (un + n)2, we obtain

n2t1(n+ 1)u2
n + 2nt1(n+ 1)un + t1(n+ 1) + nt2(n+ 1)u2

n + (n2 + 1)t2(n+ 1)un + nt2(n+ 1)+

t3(n+ 1)u2
n + 2nt3(n+ 1)un + n2t3(n+ 1) = (n2 − 1)t1(n)u2

n + (n2 − 1)t2(n)un + (n2 − 1)t3(n)

By comparing the powers of u, we get a system of difference equations:

u2 terms : n2t1(n+ 1) + nt2(n+ 1) + t3(n+ 1) = (n2 − 1)t1(n)

(3.1.6)

u terms : 2nt1(n+ 1) + (n2 + 1)t2(n+ 1) + 2nt3(n+ 1)un = (n2 − 1)t2(n)

(3.1.7)

other terms : t1(n+ 1) + nt2(n+ 1) + n2t3(n+ 1) = (n2 − 1)t3(n)

(3.1.8)

subtracting (3.1.8) from (3.1.6), we get

t1(n+ 1)− t3(n+ 1) = t1(n)− t3,

so

t1(n)− t3(n) = q1, q1 is a constant,

adding (3.1.8) to (3.1.6), we get

(n2 + 1)t1(n+ 1) + 2nt2(n+ 1) + (n2 + 1)t3(n+ 1) = (n2 − 1)(t1(n) + t3(n) (3.1.9)
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subtracting (3.1.7) from (3.1.9) and adding (3.1.7) to (3.1.9), we get respectively

t1(n+ 1)− t2(n+ 1) + t3(n+ 1) =
n+ 1

n− 1

(
t1(n)− t2(n) + t3(n)

)
,

t1(n+ 1) + t2(n+ 1) + t3(n+ 1) =
n− 1

n+ 1

(
t1(n) + t2(n) + t3

)
,

which implies

t1(n)− t2(n) + t3(n) =

( n−1∏
i=2

i+ 1

i− 1

)
q2 =

n(n− 1)

2
q2, q2 is a constant,

t1(n) + t2 + t3(n) =

( n−1∏
i=2

i− 1

i+ 1

)
q3 =

2

n(n− 1)
q3, q3 is a constant.

We have a linear system of difference equations for the coefficients t1(n), t2(n) and

t3(n),

t1(n) − t3(n) = q1

t1(n)− t2(n) + t3(n) =
n(n− 1)

2
q2

t1(n) + t2(n) + t3(n) =
2

n(n− 1)
q3

solving the system for the coefficients αn, βn and t3(n), hence

t1(n) =
1

2
q1 +

n(n− 1)

8
q2 +

1

2n(n− 1)
q3

t2(n) = −n(n− 1)

4
q2 +

1

n(n− 1)
q3,

t3(n)n = −1

2
q1 +

n(n− 1)

8
q2 +

1

2n(n− 1)
q3,

so the characteristic

Q(n, un) = t1(n)u2
n + t2(n)un + t3(n)

= q1

(1

2
u2
n −

1

2

)
+ q2

(n(n− 1)

8
u2
n −

n(n− 1)

4
un +

n(n− 1)

8

)
+q3

( 1

2n(n− 1)
u2
n +

1

n(n− 1)
un +

1

2n(n− 1)

)
=

1

2
q1(u2

n − 1) +
n(n− 1)

8
q2(u2

n − 2un + 1) +
1

2n(n− 1)
q3(u2

n + 2un + 1)
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we suppose q1 = 2, q2 = 0 and q3 = 0, Q(n, un) = u2
n − 1 for case of computation

there is no canonical coordinate un = ±1, if u2 = ±1 then un = u2. The appropriate

real-valued canonical coordinate is

sn =

∫
dun
u2
n − 1

=


1
2 ln un−1

un+1 , |un| > 1;

1
2 ln 1−un

1+un
, |un| < 1,

but u2 ≥ −1 which implies u2 ∈ (−1, 1) or (1,∞) then un belong to the same

interval, hence

sn =


1
2 ln un−1

un+1 , un > 1;

1
2 ln 1−un

1+un
, |un| < 1.

The transformation from un to sn is not injective since sn(un) = sn( 1
un

), so sn is

not compatible canonical coordinate. To solve the difference equation and get un we

seek an injective transformation to ensure the compatible condition.Therefore the

problem of solving the difference equation splits into two separate parts.

Case 1: if un > 1, so

sn =
1

2
ln
un − 1

un + 1
,

therefore the map from un to sn is injective so the compatibility condition is satisfied

and sn is a compatible coordinate.

Now, consider the difference equation for sn

sn+1 − sn =
1

2
ln
(un+1 − 1

un+1 + 1

)
− 1

2
ln
(un − 1

un + 1

)
=

1

2

(
ln(un+1 − 1)− ln(un+1 + 1)− ln(un − 1) + ln(un + 1)

)
=

1

2

(
ln
(nun + 1

un + n
− 1
)
− ln

(nun + 1

un + n
+ 1
)
− ln(un − 1) + ln(un + 1)

)
=

1

2

(
ln
((un − 1)(n− 1)

un + n

)
− ln

((un + 1)(n+ 1)

un + n

)
− ln(un − 1) + ln(un + 1)

)
=

1

2
ln
(n− 1

n+ 1

)
,
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then

sn = s2 +
1

2

n−1∑
k=2

ln
(k − 1

k + 1

)
=

1

2
ln
(u2 − 1

u2 + 1

)
+

1

2
ln
( n−1∏
k=2

k − 1

k + 1

)
=

1

2
ln
(u2 − 1

u2 + 1

)
+

1

2
ln
( 2

n(n− 1)

)
=

1

2
ln
( 2(u2 − 1)

(u2 + 1)n(n− 1)

)
,

so
1

2
ln
(un − 1

un + 1

)
=

1

2
ln
( 2(u2 − 1)

(u2 + 1)n(n− 1)

)
which implies

un =
(u2 + 1)n(n− 1) + 2(u2 − 1)

(u2 + 1)n(n− 1)− 2(u2 − 1)
.

case 2: if |un| < 1, so

sn =
1

2
ln

(
1− un
1 + un

)
,

therefore the map from un to sn is injective so sn is a compatible coordinate.

sn+1 − sn =
1

2
ln

(
1− un+1

1 + un+1

)
− 1

2
ln

(
1− un
1 + un

)
=

1

2
ln
(n− 1

n+ 1

)
,

then

sn = s2 +
1

2

n−1∑
k=2

ln

(
k − 1

k + 1

)
=

1

2
ln

(
2(1− u2)

(1 + u2)n(n− 1)

)
,

so
1

2
ln

(
1− un
1 + un

)
=

1

2
ln

(
2(1− u2)

(1 + u2)n(n− 1)

)



3. Symmetry Methods for Difference Equations 52

which implies

un =
(u2 + 1)n(n− 1) + 2(u2 − 1)

(u2 + 1)n(n− 1)− 2(u2 − 1)
.

thus, this value of un is valid for all un ≥ −1. The general solution happens to

include the solutions on which Q(n, un) = 0. �

3.2 Lie Symmetries of a Given Higher-Order Difference Equation

Consider the ordinary difference equation of order q of the form

un+q = ω(n, un, un+1, · · · , un+q−1);
∂ω

∂un
6= 0 (3.2.1)

where ω is locally smooth function.

Since for any transformation of a difference equation to be a symmetry, the set of

solutions must be mapped to itself so the symmetry condition of equation (3.2.1)

must be satisfied

ūn+q = ω(n̄, ūn, ūn+1, · · · , ūn+q−1) when (3.2.1) holds (3.2.2)

We restrict our attention to Lie symmetries of the form

n̄ = n, ūn+q = un+q + αQ(n+ q, un+q) +O(α2) (3.2.3)

Substituting this equation into (3.2.2), we get

ω(n̄, ūn, ūn+1, · · · , ūn+q−1) = ω(n, un + αQ(n, un), un+1 + αQ(n+ 1, un+1), · · · ,

un+q−1 + αQ(n+ q − 1, un+q−1))
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Finding Taylor series of the right hand side about α = 0, we get

ω(n̄, ūn, ūn+1, · · · , ūn+q−1) = ω(n, un, un+1, · · · , un+q−1) + α

(
∂ω

∂ūn

∂ūn
∂α

∣∣∣∣
α=0

+
∂ω

∂ūn+1

∂ūn+1

∂α

∣∣∣∣
α=0

+ · · ·+ ∂ω

∂ūn+q−1

∂ūn+q−1

∂α

∣∣∣∣
α=0

)
+O(α2)

= ω(n, un, un+1, · · · , un+q−1) + α

(
∂ω

∂un
Q(n, un) +

∂ω

∂un+1

Q(n+ 1, un+1)

+ · · ·+ ∂ω

∂un+q−1

Q(n+ q − 1, un+q−1)

)
+O(α2)

(3.2.4)

also we have

ω(n̄, ūn, ūn+1, · · · , ūn+q−1) = ūn+q = ω(n, un, un+1, · · · , un+q−1) + αQ(n+ q, un+q) +O(α2)

(3.2.5)

From equation (3.2.4) and (3.2.5), we get the linearized symmetry condition (LSC)

for qth order difference equations

Q(n+ q, un+q) =
∂ω

∂un
Q(n, un) +

∂ω

∂un+1

Q(n+ 1, un+1) + · · ·+ ∂ω

∂un+q−1

Q(n+ q − 1, un+q−1)

To simplify this formula, we introduce the definition of the infinitesimal generator.

Definition 3.2. The infinitesimal generator X is

X =

q−1∑
k=0

(SkQ(n, un))
∂

∂un+k

where Sk is the forward shift operator defined as follows

S : n 7→ n+ 1; Skun = un+k

and q is the order of the difference equation.

So the Linearized symmetry condition for qth order difference equations can be

written as

SkQ−Xω = 0 (3.2.6)
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which is a linear functional equation for the characteristics Q(n, un). However,

functional equation are generally hard to solve. Lie symmetries are diffeomorphism,

that is, Q(n, un) is a smooth function, so the linearized symmetry condition can be

solved by the method of differential elimination.

To transform equation (3.2.6) from a functional equation to a differential equation,

we use the following steps:

• Firstly, in order to obtain an ODE for Q(n, un) we apply appropriate differ-

ential operators to reduce the number of unknown functions then differentiate

the LSC with respect to suitable independent variable and we may need to

differentiate again.

• Secondly, from previous step we obtain an ordinary differential equation, which

can be split by gathering together all terms with the same dependence and we

solve it if possible, and obtain Q(n, un). To find the coefficients of the terms

of Q(n, un), we plug it in the equations that we obtained in the previous steps

which can be split into a system of linear difference equations by collecting all

terms with the same dependence.

• After finding the characteristics Q(n, un), we want to find the invariant vn

defined as

Definition 3.3. A function vn is invariant under the Lie group of transfor-

mations Tα if Xvn = 0, where X =
q−1∑
k=0

SkQ(n, un) ∂
∂un+k

.

For equation (3.2.1), we suppose that the characteristic Q(n, un) is known,

then the invariant vn can be found by solving the partial differential equation

Xvn = Q(n, un)
∂vn
∂un

+ SQ(n, un)
∂vn
∂un+1

+ · · ·+ Sq−1Q(n, un)
∂vn

∂un+q−1

= 0,

and the general technique to solve the partial differential equations of this form

is known as the method of characteristics and it is useful for finding analytic

solutions.
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To solve these equations, we use

dun
Q(n, un)

=
dun+1

SQ(n, un)
= · · · = dun+q−1

Sq−1Q(n, un)
:=

dvn
0
. (3.2.7)

• We want to invest symmetries to reduce the order of difference equations. We

find a compatible canonical coordinate sn, which reduces the order by one.

• Finally, we obtain un from the canonical coordinate.

Example 3.5. [13] We investigate symmetries and solutions of the second-order

difference equation

un+2 =
n+ unun+1

un+1

(3.2.8)

where the initial values u0 and u1 are arbitrary nonzero real numbers. We want to

find the solution of equation (3.2.8) by using Lie symmetries.

Solution. The linearized symmetry condition LSC to equation (3.2.8) is

Q(n+ 2, w)− ∂w

∂un
Q(n, un)− ∂w

∂un+1

Q(n+ 1, un+1) = 0,

but
∂w

∂un
= 1,

and
∂w

∂un+1

=
−n
u2
n+1

,

so the LSC is

Q(n+ 2, w)−Q(n, un) +
n

u2
n+1

Q(n+ 1, un+1) = 0. (3.2.9)

We apply the differential operator L to transform this functional equation to differ-

ential equation, given by

L =
∂

∂un
+
u2
n+1

n

∂

∂un+1

,
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to equation (3.2.9) to get

∂

∂un

(
Q(n+ 2, w)−Q(n, un) +

n

u2
n+1

Q(n+ 1, un+1)

)
+(

u2
n+1

n

∂

∂un+1

)(
Q(n+ 2, w)−Q(n, un) +

n

u2
n+1

Q(n+ 1, un+1)

)
= 0,

but

∂

∂un

(
Q(n+ 2, w)

)
= 0,

∂

∂un

(
Q(n, un)

)
= Q′(n, un),

∂

∂un

(
n

u2
n+1

Q(n+ 1, un+1)

)
= 0,

∂

∂un+1

(
Q(n+ 2, w)

)
= 0,

∂

∂un+1

(
Q(n, un)

)
= 0,

∂

∂un+1

(
n

u2
n+1

Q(n+ 1, un+1)

)
=

n

u2
n+1

Q′(n+ 1, un+1) +
−2n

u3
n+1

Q(n+ 1, un+1),

this leads to

Q′(n+ 1, un+1)− 2

un+1

Q(n+ 1, un+1)−Q′(n, un) = 0, (3.2.10)

now, we differentiate this equation with respect to un keeping un+1 fixed. As a result

we obtain the ODE

−Q′′(n, un) = 0,

whose solution is given by

Q(n, un) = α(n)un + β(n). (3.2.11)
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Next we substitute (3.2.11) into (3.2.10), we get

α(n+ 1)− 2

un+1

(α(n+ 1)un+1 + β(n+ 1))− α(n) = 0,

the equation can be split by gathering together all terms with the same dependence

upon un+1

−α(n+ 1)− α(n)− 2

un+1

β(n+ 1) = 0.

Now, we compare the two sides of the last equation, to obtain

−α(n+ 1)− α(n) = 0,

which is a first order linear difference equation whose general solution is

α(n) = c(−1)n,

where c is a constant. We have also

β(n+ 1) = 0 which implies β(n) = 0.

So

Q(n, un) = (−1)nun.

We want to find the invariant using equation (3.2.7),

dun
(−1)nun

=
dun+1

(−1)n+1un+1

=
dvn
0
,

Taking the first

(
dun

(−1)nun

)
and second

(
dun+1

(−1)n+1un+1

)
invariants, we get

ln |un|+ c∗ = − ln |un+1| which implies − c∗ = ln |un+1un| ,

where c∗ ∈ R, so

t1 = unun+1 where t1 = e−c
∗
,

also, we have
dun
un

=
dvn
0
,
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which implies that

vn = t, such that t = f(t1),

where t1 and t are constants.

We choose f(t1) = t1, therefore

vn = unun+1. (3.2.12)

Applying the shift operator to vn yields

Svn = vn+1 = un+1un+2

= un+1

(
n+ unun+1

un+1

)
= n+ unun+1

= n+ vn, (3.2.13)

So we have the equation

vn+1 − vn = n,

which is a first order linear difference equation whose solution is given by

vn = v0 +
n−1∑
k=0

k

= v0 +
(n− 1)n

2
. (3.2.14)

Then by equations (3.2.12) and (3.2.14) we have

vn = unun+1 = v0 +
(n− 1)n

2
,

Solving for un+1 we obtain

un+1 =
v0

un
+

(n− 1)n

2un
. (3.2.15)

The order of Equation (3.2.8) has been reduced by one.

To solve equation (3.2.15) we need to obtain a canonical coordinate,

sn =

∫
dun

(−1)nun
= (−1)n ln |un| .
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So sn+1 − sn is an invariant. Consequently,

sn+1 − sn = (−1)n+1 ln |un+1| − (−1)n ln |un|

= (−1)n+1 ln |unun+1|

= (−1)n+1 ln |vn|

= (−1)n+1 ln |∗| v0 +
(n− 1)n

2
, (3.2.16)

The general solution of (3.2.16) is

sn = s0 +
n−1∑
k=0

(−1)k+1 ln |vk|

= ln |u0|+
n−1∑
k=0

(−1)k+1 ln |∗|u0u1 +
k(k − 1)

2
,

but sn = (−1)n ln |un|, so the general solution of (3.2.8)

un = exp

(
(−1)n ln |u0|+

n−1∑
k=0

(−1)k−n+1 ln |∗|u0u1 +
k(k − 1)

2

)

= exp

(
(−1)n ln |u0|

)
· exp

(
n−1∑
k=0

(−1)k−n+1 ln |∗|u0u1 +
k(k − 1)

2

)

= (u0)(−1)n
n−1∏
k=0

(
u0u1 +

k(k − 1)

2

)(−1)k−n+1

�



4. SOLUTION AND BEHAVIOR OF A RATIONAL

DIFFERENCE EQUATION

4.1 Exact Solution of the Difference Equation un+6 = un
An+Bnunun+3

We investigate symmetries and solutions of the sixth-order difference equation

un+6 =
un

An +Bnunun+3

:= ω (4.1.1)

where the initial values u0, u1, · · · , u5 are arbitrary nonzero real numbers. We want

to find the solution of equation (4.1.1) by using Lie symmetries.

The linearized symmetry condition (LSC) to equation (4.1.1) is

Q(n+ 6, ω)− ∂ω

∂un
Q(n, un)− ∂ω

∂un+1

Q(n+ 1, un+1)− ∂ω

∂un+2

Q(n+ 2, un+2)

− ∂ω

∂un+3

Q(n+ 3, un+3)− ∂ω

∂un+4

Q(n+ 4, un+4)− ∂ω

∂un+5

Q(n+ 5, un+5) = 0

but

∂ω

∂un
=
Anω

2

u2
n

∂ω

∂un+1

= 0

∂ω

∂un+2

= 0

∂ω

∂un+3

= −Bnω
2
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∂ω

∂un+4

= 0

∂ω

∂un+5

= 0

So the LSC is given by

Q(n+ 6, ω)− Anω
2

u2
n

Q(n, un) +Bnω
2Q(n+ 3, un+3) = 0 (4.1.2)

We apply the differential operator L to transform this functional equation to differ-

ential equation, given by

L =
∂

∂un
+
∂un+3

∂un

∂

∂un+3

where

∂un+3

∂un
= − ∂ω/∂un

∂ω/∂un+3

=
An
Bnu2

n

so

L =
∂

∂un
+

An
Bnu2

n

∂

∂un+3

to get

∂

∂un

(
Q(n+ 6, ω)− Anω

2

u2
n

Q(n, un) +Bnω
2Q(n+ 3, un+3)

)
+

An
Bnu2

n

∂

∂un+3

(
Q(n+ 6, ω)− Anω

2

u2
n

Q(n, un) +Bnω
2Q(n+ 3, un+3)

)
= 0

but

∂

∂un
(Q(n+ 6, ω)) = 0

∂

∂un

(
Anω

2

u2
n

Q(n, un)

)
=
Anω

2

u2
n

Q′(n, un)− 2Anω
2

u3
n

Q(n, un)
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∂

∂un
(Bnω

2Q(n+ 3, un+3)) = 0

∂

∂un+3

(Q(n+ 6, ω)) = 0

∂

∂un+3

(
Anω

2

u2
n

Q(n, un)

)
= 0

∂

∂un+3

(Bnω
2Q(n+ 3, un+3)) = Bnω

2Q′(n+ 3, un+3)

this leads to

−Anω
2

u2
n

Q′(n, un) +
2Anω

2

u3
n

Q(n, un) +
Anω

2

u2
n

Q′(n+ 3, un+3) = 0

multiplying this equation by − u2n
Anω2 , we get

Q′(n, un)− 2

un
Q(n, un)−Q′(n+ 3, un+3) = 0 (4.1.3)

now, we differentiate equation (4.1.3) with respect to un keeping un+3 fixed, we

obtain the ODE

Q′′(n, un)− 2

un
Q′(n, un) +

2

u2
n

Q(n, un) = 0

multiplying by u2
n, we get

u2
nQ
′′(n, un)− 2unQ

′(n, un) + 2Q(n, un) = 0

which is a Cauchy differential equation, whose solution is given by

Q(n, un) = αnu
2
n + βnun (4.1.4)

for some arbitrary functions α and β of n. We substitute equation (4.1.4) into

(4.1.3), we get

−2αn+3un+3 − (βn + βn+3) = 0

this equation can be spilt by gathering together all terms with the same dependence

upon un+3 1 : βn + βn+3 = 0

un+3 : 2αn+3 = 0
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we have

αn+3 = 0 which implies αn = 0

we have also

βn + βn+3 = 0

which is a third order linear difference equation whose general solution is

βn = (−1)nc1+

(
1

2
+

√
3

2
i

)n
c2+

(
1

2
−
√

3

2
i

)n
c3

for some arbitrary constants cj, j = 1, 2, 3. So we get three characteristics and their

corresponding generators as follows:

X1 = (−1)nun∂un + (−1)n+1un+1∂un+1 + (−1)n+2un+2∂un+2 + (−1)n+3un+3∂un+3

+ (−1)n+4un+4∂un+4 + (−1)n+5un+5∂un+5

X2 =

(
1

2
+

√
3

2
i

)n
un∂un+

(
1

2
+

√
3

2
i

)n+1

un+1∂un+1+

(
1

2
+

√
3

2
i

)n+2

un+2∂un+2

+

(
1

2
+

√
3

2
i

)n+3

un+3∂un+3+

(
1

2
+

√
3

2
i

)n+4

un+4∂un+4+

(
1

2
+

√
3

2
i

)n+5

un+5∂un+5

X3 =

(
1

2
−
√

3

2
i

)n
un∂un+

(
1

2
−
√

3

2
i

)n+1

un+1∂un+1+

(
1

2
−
√

3

2
i

)n+2

un+2∂un+2

+

(
1

2
+

√
3

2
i

)n+3

un+3∂un+3+

(
1

2
−
√

3

2
i

)n+4

un+4∂un+4+

(
1

2
−
√

3

2
i

)n+5

un+5∂un+5

Now, utilizing X1, we introduce the canonical coordinate

Sn =

∫
dun

(−1)nun
= (−1)n lnun

Now, we want to find the invariant using equation (3.2.7) we obtain

dun
(−1)nun

=
dun+1

(−1)n+1un+1

= · · · = dun+5

(−1)n+5un+5

=
dvn
0
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Taking the first

(
dun

(−1)nun

)
and the second

(
dun+1

(−1)n+1un+1

)
invariants, we get

lnun + c1 = − lnun+1 which implies − c1 = lnunun+1

where c1 ∈ R, so

T1 = unun+1, where T1 = ec1

Taking the first

(
dun

(−1)nun

)
and the third

(
dun+2

(−1)n+2un+2

)
invariants, we get

lnun + c2 = lnun+2 which implies c2 = ln
un+2

un

where c2 ∈ R, so

T2 =
un+2

un
, where T2 = ec2

Taking the first

(
dun

(−1)nun

)
and the fourth

(
dun+3

(−1)n+3un+3

)
invariants, we get

lnun + c3 = − lnun+3 which implies − c3 = lnunun+3

where c3 ∈ R, so

T3 = unun+3, where T3 = e−c3

Taking the first

(
dun

(−1)nun

)
and the fifth

(
dun+4

(−1)n+4un+4

)
invariants, we get

lnun + c4 = lnun+4 which implies c4 = ln
un+4

un

where c4 ∈ R, so

T4 =
un+4

un
, where T4 = ec4
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Taking the first

(
dun

(−1)nun

)
and the sixth

(
dun+5

(−1)n+5un+5

)
invariants, we get

lnun + c5 = − lnun+5 which implies − c5 = lnunun+5

where c5 ∈ R, so

T5 = unun+5, where T5 = e−c5

Taking the second

(
dun+1

(−1)n+1un+1

)
and the third

(
dun+2

(−1)n+2un+2

)
invariants, we get

lnun+1 + c6 = − lnun+2 which implies − c6 = lnun+1un+2

where c6 ∈ R, so

T6 = un+1un+2, where T6 = e−c6

Taking the second

(
dun+1

(−1)n+1un+1

)
and the fourth

(
dun+3

(−1)n+3un+3

)
invariants, we

get

lnun+1 + c7 = lnun+3 which implies c7 = ln
un+3

un+1

where c7 ∈ R, so

T7 = un+3un+1, where T7 = ec7

Taking the second

(
dun+1

(−1)n+1un+1

)
and the fifth

(
dun+4

(−1)n+4un+4

)
invariants, we get

lnun+1 + c8 = − lnun+4 which implies − c8 = lnun+1un+4

where c8 ∈ R, so

T8 = un+1un+4, where T8 = e−c8
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Taking the second

(
dun+1

(−1)n+1un+1

)
and the sixth

(
dun+5

(−1)n+5un+5

)
invariants, we get

lnun+1 + c9 = lnun+5 which implies c9 = ln
un+5

un+1

where c9 ∈ R, so

T9 =
un+5

un+1

, where T9 = ec9

Taking the third

(
dun+2

(−1)n+2un+2

)
and the fourth

(
dun+3

(−1)n+3un+3

)
invariants, we get

lnun+2 + c10 = − lnun+3 which implies − c10 = lnun+2un+3

where c10 ∈ R, so

T10 = un+2un+3, where T10 = e−c10

Taking the third

(
dun+2

(−1)n+2un+2

)
and the fifth

(
dun+4

(−1)n+4un+4

)
invariants, we get

lnun+2 + c11 = lnun+4 which implies c11 = ln
un+4

un+2

where c11 ∈ R, so

T11 =
un+4

un+2

, where T11 = ec11

Taking the third

(
dun+2

(−1)n+2un+2

)
and the sixth

(
dun+5

(−1)n+5un+5

)
invariants, we get

lnun+2 + c12 = − lnun+5 which implies − c12 = lnun+2un+5

where c12 ∈ R, so

T12 = un+2un+5, where T12 = e−c12
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Taking the fourth

(
dun+3

(−1)n+3un+3

)
and the fifth

(
dun+4

(−1)n+4un+4

)
invariants, we get

lnun+3 + c13 = − lnun+4 which implies − c13 = lnun+3un+4

where c13 ∈ R, so

T13 = un+3un+4, where T13 = e−c13

Taking the fourth

(
dun+3

(−1)n+3un+3

)
and the sixth

(
dun+5

(−1)n+5un+5

)
invariants, we get

lnun+3 + c14 = lnun+5 which implies c14 = ln
un+5

un+3

where c14 ∈ R, so

T14 =
un+5

un+3

, where T14 = ec14

Taking the fifth

(
dun+4

(−1)n+4un+4

)
and the sixth

(
dun+5

(−1)n+5un+5

)
invariants, we get

lnun+3 + c15 = − lnun+5 which implies − c15 = lnun+4un+5

where c15 ∈ R, so

T15 = un+4un+5, where T15 = e−c15

also, we have

dun
(−1)nun

=
dvn
0

which implies that

vn = T such that T = f(T1, T2, · · · , T15)

where Ti, i = 1, · · · , 15 and T are constants.
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we choose f(T1, T2, · · · , T15) = T3 = unun+3, therefore

vn = unun+3

Apply the shift operator to vn, yields

S3vn = vn+3 = un+3un+6

=
un+3un

An +Bnunun+3

=
vn

An +Bnvn

which is a third order difference equation, which we solve to find vn. From the above

equation we have

1

vn+3

= An
1

vn
+Bn

Let λn = 1
vn

we obtain

λn+3 = Anλn +Bn

This equation can be solved recursively. Let λ0, λ1 and λ2 be given, then

λ3 = A0λ0 +B0

λ4 = A1λ1 +B1

λ5 = A2λ2 +B2

λ6 = A0A3λ0 + A3B0 +B3

λ7 = A1A4λ1 + A4B1 +B4

λ8 = A2A5λ2 + A5B2 +B5

λ9 = A0A3A6λ0 + A3A6B0 + A6B3 +B6

λ10 = A1A4A7λ1 + A4A7B1 + A7B4 +B7

λ11 = A2A5A8λ2 + A5A8B2 + A8B5 +B8

So the general solution given by

λ3n+m = λm

n−1∏
i1=0

A3i1+m +
n−1∑
i2=0

(
B3i2

n−1∏
m=i2+1

A3m

)
, m = 0, 1, 2
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but vn = 1
λn

so

1

λ3n+m

=
1

λm
∏n−1

i1=0A3i1+m +
∑n−1

i2=0

(
B3i2

∏n−1
m=i2+1A3m

) , m = 0, 1, 2

we have

v3n+m =
vm∏n−1

i1=0A3i1+m + vm
∑n−1

i2=0

(
B3i2

∏n−1
m=i2+1 A3m

)
=

umum+3∏n−1
i1=0A3i1+m + umum+3

∑n−1
i2=0

(
B3i2

∏n−1
m=i2+1 A3m

) , m = 0, 1, 2 (4.1.5)

The canonical coordinate sn

sn =

∫
dun

(−1)nun
= (−1)n lnun

So sn+3 − sn is an invariant. Consequently,

sn+3 − sn = (−1)n+3 lnun+3 − (−1)n lnun

= −(−1)n(lnun+3 + lnun)

= (−1)n+1(lnun+3un)

= (−1)n+1(ln vn)

whose general solution is given by

s3n+m = c0+

(
−1

2
+

√
3

2
i

)3n+m

c1+

(
−1

2
−
√

3

2
i

)3n+m

c2 + sm +
n−1∑
i=0

(−1)i+1 ln v3i+m

where m = 0, 1, 2. From sn = (−1)n lnun we obtain

u3n+m = exp

(
(−1)3n+ms3n+m

)
= exp

(
(−1)3n+mc0 + (−1)3n+m

(
−1

2
+

√
3

2
i

)3n+m

c1 + (−1)3n+m

(
−1

2
−
√

3

2
i

)3n+m

c2

+ (−1)3n+msm + (−1)3n+m

n−1∑
i=0

(−1)i+1 ln v3i+m

)
, m = 0, 1, 2.
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To find c0, c1 and c2 we substitute n = 0 and m = 0, 1, 2, we obtain

c0 + c1 + c2 = 0

c0+

(
−1

2
+

√
3

2
i

)
c1+

(
−1

2
−
√

3

2
i

)
c2 = 0

c0+

(
−1

2
+

√
3

2
i

)2

c1+

(
−1

2
−
√

3

2
i

)2

c2 = 0

from this equations we get

c0 = c1 = c2 = 0

So the general solution of equation

u3n+m = exp

(
(−1)3n+msm + (−1)3n+m

n−1∑
i=0

(−1)i+1 ln v3i+m

)

= u(−1)n

m exp

( n−1∑
i=0

(−1)3n+m+i+1 ln v3i+m

)
, m = 0, 1, 2

= u(−1)n

m

n−1∏
i=0

v
(−1)n+m+i+1

3i+m , m = 0, 1, 2 (4.1.6)

Substituting m = 0, 1, 2 in equation (4.1.5), we obtain

v3n =
u0u3∏n−1

i1=0A3i1 + u0u3

∑n−1
i2=0

(
B3i2

∏n−1
m=i2+1A3m

)
v3n+1 =

u1u4∏n−1
i1=0 A3i1+1 + u1u4

∑n−1
i2=0

(
B3i2

∏n−1
m=i2+1 A3m

)
v3n+2 =

u2u5∏n−1
i1=0 A3i1+2 + u2u5

∑n−1
i2=0

(
B3i2

∏n−1
m=i2+1 A3m

)
(4.1.7)

Substituting m = 0, 1, 2 in equation (4.1.6), we get

u3n = u
(−1)n

0

n−1∏
i=0

v
(−1)n+i+1

3i
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u3n+1 = u
(−1)n

1

n−1∏
i=0

v
(−1)n+i+2

3i+1

u3n+2 = u
(−1)n

2

n−1∏
i=0

v
(−1)n+i+3

3i+2

Substituting n = 1, 2, · · · , we obtain

u3 = u−1
0 v0

u4 = u−1
1 v−1

1

u5 = u−1
2 v2

u6 = u0
v3

v0

u7 = u1
v1

v4

u8 = u2
v5

v2

u9 = u3
v6

v3

u10 = u4
v4

v7

u11 = u5
v8

v5

So we can write the solution as

u6n = u0

n−1∏
k=0

v6k+3

v6k

u6n+1 = u1

n−1∏
k=0

v6k+1

v6k+4

u6n+2 = u2

n−1∏
k=0

v6k+5

v6k+2

u6n+3 = u3

n−1∏
k=0

v6k+6

v6k+3
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u6n+4 = u4

n−1∏
k=0

v6k+4

v6k+7

u6n+5 = u5

n−1∏
k=0

v6k+8

v6k+5

From equations (4.1.7), we get

u6n = u0

n−1∏
k=0

∏2k
i1=0A3i1 + u0u3

∑2k
i2=0

(
B3i2

∏2k
m=i2+1A3m

)
∏2k−1

i1=0 A3i1 + u0u3

∑2k−1
i2=0

(
B3i2

∏2k−1
m=i2+1A3m

)

u6n+1 = u1

n−1∏
k=0

∏2k−1
i1=0 A3i1 + u1u4

∑2k−1
i2=0

(
B3i2

∏2k−1
m=i2+1 A3m

)
∏2k

i1=0A3i1 + u1u4

∑2k
i2=0

(
B3i2

∏2k
m=i2+1A3m

)

u6n+2 = u2

n−1∏
k=0

∏2k
i1=0A3i1 + u2u5

∑2k
i2=0

(
B3i2

∏2k
m=i2+1A3m

)
∏2k−1

i1=0 A3i1 + u2u5

∑2k−1
i2=0

(
B3i2

∏2k−1
m=i2+1 A3m

)

u6n+3 = u3

n−1∏
k=0

∏2k+1
i1=0 A3i1 + u0u3

∑2k+1
i2=0

(
B3i2

∏2k+1
m=i2+1 A3m

)
∏2k

i1=0A3i1 + u0u3

∑2k
i2=0

(
B3i2

∏2k
m=i2+1A3m

)

u6n+4 = u4

n−1∏
k=0

∏2k
i1=0A3i1 + u1u4

∑2k
i2=0

(
B3i2

∏2k
m=i2+1A3m

)
∏2k+1

i1=0 A3i1 + u1u4

∑2k+1
i2=0

(
B3i2

∏2k+1
m=i2+1 A3m

)

u6n+5 = u5

n−1∏
k=0

∏2k+1
i1=0 A3i1 + u2u5

∑2k+1
i2=0

(
B3i2

∏2k+1
m=i2+1 A3m

)
∏2k

i1=0A3i1 + u2u5

∑2k
i2=0

(
B3i2

∏2k
m=i2+1A3m

)
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4.2 Exact Solution Of The Difference Equation

un+8 = un
An+αnunun+2un+4un+6

We investigate symmetries and solutions of the of eighth-order difference equation

un+8 =
un

An +Bnunun+2un+4un+6

:= ω (4.2.1)

where the initial values u0, u1, · · · , u7 are arbitrary nonzero real numbers. We want

to find the solution of equation (4.2.1) by using Lie symmetries.

The linearized symmetry condition (LSC) to equation (4.2.1) is

Q(n+8, ω)− ∂ω

∂un
Q(n, un)− ∂ω

∂un+1

Q(n+1, un+1)− ∂ω

∂un+2

Q(n+2, un+2)− ∂ω

∂un+3

Q(n+3, un+3)

− ∂ω

∂un+4

Q(n+4, un+4)− ∂ω

∂un+5

Q(n+5, un+5)− ∂ω

∂un+6

Q(n+6, un+6)− ∂ω

∂un+7

Q(n+7, un+7) = 0

but

∂ω

∂un
=
Anω

2

u2
n

∂ω

∂un+1

= 0

∂ω

∂un+2

= −Bnσ
2un+4un+6

∂ω

∂un+3

= 0

∂ω

∂un+4

= −Bnσ
2un+2un+6

∂ω

∂un+5

= 0

∂ω

∂un+6

= −Bnσ
2un+2un+4

∂ω

∂un+7

= 0
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So the LSC is given by

Q(n+ 8, ω)− Anω
2

u2
n

Q(n, un) +Bnω
2un+4un+6Q(n+ 2, un+2) +Bnω

2un+2un+6Q(n+ 4, un+4)

+Bnω
2un+2un+4Q(n+ 6, un+6) = 0

(4.2.2)

We apply the differential operator L to transform this functional equation to differ-

ential equation, given by

L =
∂

∂un
+
∂un+2

∂un

∂

∂un+2

where

∂un+2

∂un
= − ∂ω/∂un

∂ω/∂un+2

=
An

Bnu2
nun+4un+6

so

L =
∂

∂un
+

An
Bnu2

nun+4un+6

∂

∂un+3

to get

∂
∂un

(
Q(n+ 8, ω)− Anω2

u2n
Q(n, un) +Bnω

2un+4un+6Q(n+ 2, un+2) +Bnω
2un+2un+6

Q(n+ 4, un+4) +Bnω
2un+2un+4Q(n+ 6, un+6)

)
+ An

Bnu2nun+4un+6

∂
∂un+2

(
Q(n+ 8, ω)

−Anω2

u2n
Q(n, un) +Bnω

2un+4un+6Q(n+ 2, un+2) +Bnω
2un+2un+6Q(n+ 4, un+4)

+Bnω
2un+2un+4Q(n+ 6, un+6)

)
= 0

but

∂

∂un
(Q(n+ 8, ω)) = 0

∂

∂un

(
Anω

2

u2
n

Q(n, un)

)
=
Anω

2

u2
n

Q′(n, un)− 2Anω
2

u3
n

Q(n, un)

∂

∂un
(Bnω

2un+4un+6Q(n+ 2, un+2)) = 0
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∂

∂un
(Bnω

2un+2un+6Q(n+ 4, un+4)) = 0

∂

∂un
(Bnω

2un+2un+4Q(n+ 6, un+6)) = 0

∂

∂un+2

(Q(n+ 8, ω)) = 0

∂

∂un+2

(
Anω

2

u2
n

Q(n, un)

)
= 0

∂

∂un+2

(Bnω
2un+4un+6Q(n+ 2, un+2)) = Bnω

2un+4un+6Q
′(n+ 2, un+2)

∂

∂un+2

(Bnω
2un+2un+6Q(n+ 4, un+4)) = Bnω

2un+6Q(n+ 4, un+4)

∂

∂un+2

(Bnω
2un+2un+4Q(n+ 6, un+6)) = Bnω

2un+4Q(n+ 6, un+6)

this implies

−Anω
2

un
Q′(n, un) +

2Anω
2

u3
n

Q(n, un) +
Anω

2

u2
n

Q′(n+ 2, un+2) +
Anω

2

u2
nun+4

Q(n+ 4, un+4)

+
Anω

2

u2
nun+6

Q(n+ 6, un+6) = 0

multiplying this equation by − u2n
Anω2 , we obtain

Q′(n.un)− 2

un
Q(n, un)−Q′(n+ 2, un+2)− 1

un+4

Q(n+ 4, un+4)− 1

un+6

Q(n+ 6, un+6) = 0

(4.2.3)

now, we differentiate equation (4.2.3) with respect to un keeping un+2, un+4 and

un+6 fixed, we get

Q′′(n, un)− 2

un
Q′(n, un) +

2

u2
n

Q(n, un) = 0

multiplying by u2
n, we get

u2
nQ
′′(n, un)− 2unQ

′(n, un) + 2Q(n, un) = 0

which is Euler differential equation, whose solution is given by

Q(n, un) = αnu
2
n + βnun (4.2.4)
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for some arbitrary function α and β of n. We substitute equation (4.2.4) into (4.2.3),

we get

βn + 2αn+2un+2 + βn+2 + αn+4un+4 + βn+4 + αn+6un+6 + βn+6 = 0

1 : βn + βn+2 + βn+4 + βn+6 = 0

un+2 : 2αn+2 = 0

un+4 : αn+4 = 0

un+6 : αn+6 = 0

we have

αn+2, αn+4 and αn+6 = 0 which implies αn = 0

we have also

βn + βn+2 + βn+4 + βn+6 = 0

which is sixth order linear difference equation whose general solution is

βn =

(
1√
2

+
1√
2
i

)n
c1+

(
1√
2
− 1√

2
i

)n
c2+

(
− 1√

2
+

1√
2
i

)n
c3+

(
− 1√

2
− 1√

2
i

)n
c4

+ (i)nc5 + (−i)nc6

for some arbitrary constants cj, j = 1, · · · , 6. So we get six characteristics and their

corresponding generators are as follows:

X1 = (
1√
2

+
1√
2
i)nun∂un+(

1√
2

+
1√
2
i)n+1un+1∂un+1 +(

1√
2

+
1√
2
i)n+2un+2∂un+2

+(
1√
2

+
1√
2
i)n+3un+3∂un+3 +(

1√
2

+
1√
2
i)n+4un+4∂un+4 +(

1√
2

+
1√
2
i)n+5un+5∂un+5

+ (
1√
2

+
1√
2
i)n+6un+6∂un+6 + (

1√
2

+
1√
2
i)n+7un+7∂un+7

X2 = (
1√
2
− 1√

2
i)nun∂un + (

1√
2
− 1√

2
i)n+1un+1∂un+1 + (

1√
2
− 1√

2
i)n+2un+2∂un+2

+(
1√
2
− 1√

2
i)n+3un+3∂un+3 +(

1√
2
− 1√

2
i)n+4un+4∂un+4 +(

1√
2
− 1√

2
i)n+5un+5∂un+5

+ (
1√
2
− 1√

2
i)n+6un+6∂un+6 + (

1√
2
− 1√

2
i)n+7un+7∂un+7
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X3 = (− 1√
2

+
1√
2
i)nun∂un+(− 1√

2
+

1√
2
i)n+1un+1∂un+1+(− 1√

2
+

1√
2
i)n+2un+2∂un+2

+(− 1√
2

+
1√
2
i)n+3un+3∂un+3+(− 1√

2
+

1√
2
i)n+4un+4∂un+4+(− 1√

2
+

1√
2
i)n+5un+5∂un+5

+ (− 1√
2

+
1√
2
i)n+6un+6∂un+6 + (− 1√

2
+

1√
2
i)n+7un+7∂un+7

X4 = (− 1√
2
− 1√

2
i)nun∂un+(− 1√

2
− 1√

2
i)n+1un+1∂un+1+(− 1√

2
− 1√

2
i)n+2un+2∂un+2

+(− 1√
2
− 1√

2
i)n+3un+3∂un+3+(− 1√

2
− 1√

2
i)n+4un+4∂un+4+(− 1√

2
− 1√

2
i)n+5un+5∂un+5

+ (− 1√
2
− 1√

2
i)n+6un+6∂un+6 + (− 1√

2
− 1√

2
i)n+7un+7∂un+7

X5 = (i)nun∂un+(i)n+1un+1∂un+1 +(i)n+2un+2∂un+2 +(i)n+3un+3∂un+3 +(i)n+4un+4

∂un+4 + (i)n+5un+5∂un+5 + (i)n+6un+6∂un+6 + (i)n+7un+7∂un+7

X6 = (−i)nun∂un+(−i)n+1un+1∂un+1+(−i)n+2un+2∂un+2+(−i)n+3un+3∂un+3+(−i)n+4

un+4∂un+4 + (−i)n+5un+5∂un+5 + (−i)n+6un+6∂un+6 + (−i)n+7un+7∂un+7

Now, utilizing X1, we introduce the canonical coordinate

sn =

∫
dun

( 1√
2

+ 1√
2
i)nun

= (
1√
2
− 1√

2
i)n lnun

Now, we want to find the invariant using equation (3.2.7) we obtain

dun
( 1√

2
+ 1√

2
i)nun

=
dun+1

( 1√
2

+ 1√
2
i)n+1un+1

= · · · = dun+7

( 1√
2

+ 1√
2
i)n+7un+7

=
dvn
0

We proceed as in the previous equation to find the invariant. We get 28 constants

t1, t2, · · · , t28. Using the first

(
dun

( 1√
2

+ 1√
2
i)nun

)
and the fifth

(
dun+4

( 1√
2

+ 1√
2
i)n+4un+4

)
invari-

ants

lnun + c4 = − lnun+4 which implies − c4 = lnunun+4

where c4 ∈ R, so

t4 = unun+4, where t4 = e−c4
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also, we have

dun
( 1√

2
+ 1√

2
i)nun

=
dvn
0

which implies that

vn = t such that t = f(t1, t2, · · · , t28)

where ti, i = 1, · · · , 28 and t are constants.

we choose f(t1, t2, · · · , t28) = t4 = unun+4, therefore

vn = unun+4

Apply the shift operator to vn, yields

Svn = vn+1 = un+1un+5

S2vn = vn+2 = un+2un+6

S3vn = vn+3 = un+3un+7

S4vn = vn+4 = un+4un+8

=
un+4un

An +Bnunun+2un+4un+6

=
vn

An +Bnvnvn+2

So we have the equation:

vn+4 =
vn

An +Bnvnvn+2

= θ(n, vn, vn+1, vn+2, vn+3) (4.2.5)

which is a fourth order difference equation, and we can use symmetry method to

solve it. The (LSC) is:

Q̄(n+ 4, vn+4)− ∂θ

∂vn
Q̄(n, vn)− ∂θ

∂vn+1

Q̄(n+ 1, vn+1)− ∂θ

∂vn+2

Q̄(n+ 2, vn+2)

− ∂θ

∂vn+3

Q̄(n+ 3, vn+3) = 0
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but

∂θ

∂vn
=
Anθ

2

v2
n

∂θ

∂vn+1

= 0

∂θ

∂vn+2

= −Bnθ
2

∂θ

∂vn+3

= 0

So the LSC is given by

Q̄(n+ 4, vn+4)− Anθ
2

v2
n

Q̄(n, vn) +Bnθ
2Q̄(n+ 3, vn+3) = 0 (4.2.6)

We apply the differential operator L to transform this functional equation to differ-

ential equation, given by

L =
∂

∂vn
+
∂vn+2

∂vn

∂

∂vn+2

where

∂vn+2

∂vn
= − ∂θ/∂vn

∂θ/∂vn+2

=
An
Bnv2

n

so

L =
∂

∂vn
+

An
Bnv2

n

∂

∂vn+2

to get

∂

∂vn

(
Q̄(n+ 4, θ)− Anθ

2

v2
n

Q̄(n, vn) +Bnθ
2Q̄(n+ 3, vn+3)

)
+

An
Bnv2

n

∂

∂vn+2

(
Q̄(n+ 4, θ)− Anθ

2

v2
n

Q̄(n, vn) +Bnθ
2Q̄(n+ 3, vn+3)

)
= 0
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but

∂

∂vn
Q̄(n+ 4, θ) = 0

∂

∂vn

(
Anθ

2

v2
n

Q̄(n, vn)

)
=
Anθ

2

v2
n

Q̄′(n, vn)− 2Anθ
2

v3
n

Q̄(n, vn)

∂

∂vn
(Bnθ

2Q̄(n+ 2, vn+2)) = 0

∂

∂vn+2

Q̄(n+ 4, θ) = 0

∂

∂vn+2

(
Anθ

2

v2
n

Q̄(n, vn)

)
= 0

∂

∂vn+2

(Bnθ
2Q̄(n+ 2, vn+2)) = Bnθ

2Q̄′(n+ 2, vn+2)

this implies

−Anθ
2

v2
n

Q̄′(n, vn) +
2Anθ

2

v3
n

Q̄(n, vn) +
Anθ

2

v2
n

Q̄′(n+ 2, vn+2) = 0

multiplying this equation by − v2n
Anθ2

, we get

Q̄′(n, vn)− 2

vn
Q̄(n, vn)− Q̄′(n+ 2, vn+2) = 0 (4.2.7)

now, we differentiate equation (4.2.7) with respect to vn keeping vn+2 fixed, we

obtain the ODE

Q̄′′(n, vn)− 2

vn
Q̄′(n, un) +

2

v2
n

Q̄(n, vn) = 0

multiplying by v2
n, we get

v2
nQ̄
′′(n, vn)− 2vnQ̄

′(n, vn) + 2Q̄(n, vn) = 0

which is Euler differential equation, whose solution is given by

Q̄(n, vn) = ᾱnv
2
n + β̄nvn (4.2.8)

for some arbitrary function ᾱ and β̄ of n. We substitute equation (4.2.8) into (4.2.7),

we get

−2ᾱn+2vn+2 − (β̄n + β̄n+2) = 0
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this equation can be spilt by gathering together all terms with the same dependence

upon vn+2 1 : β̄n + β̄n+2 = 0

vn+2 : 2ᾱn+2 = 0

we have

ᾱn+2 = 0 which implies ᾱn = 0

we have also

β̄n + β̄n+2 = 0

which is a second order linear difference equation whose general solution is

β̄n = (−i)nc1 + (i)nc2

for some arbitrary constants c1 and c2. So we get two characteristics and their

corresponding generators are as follows:

X1 = (i)nvn∂vn + (i)n+1vn+1∂vn+1 + (i)n+2vn+2∂vn+2 + (i)n+3vn+3∂vn+3

X2 = (−i)nvn∂vn + (−i)n+1vn+1∂vn+1 + (−i)n+2vn+2∂vn+2 + (−i)n+3vn+3∂vn+3

Now, utilizing X1, we introduce the canonical coordinate

s̄n =

∫
dvn

(i)nvn
= (−i)n ln vn

Now, we want to find the invariant using equation (3.2.7) we obtain

dvn
(i)nvn

=
dvn+1

(i)n+1vn+1

=
dvn+2

(i)n+2vn+2

=
dvn+3

(i)n+3vn+3

=
dv̄n
0

We proceed as in the previous equation to find the invariant. We get 6 constants

z1, z2, · · · , z6. Using the first

(
dvn

(i)nvn

)
and the third

(
dvn+2

(i)n+2vn+2

)
invariants, we get

ln vn + c2 = − ln vn+2 which implies − c2 = ln vnvn+2
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where c2 ∈ R, so

z2 = vnvn+2, where z2 = e−c2

also, we have

dvn
(i)nvn

=
dv̄n
0

which implies that

v̄n = z such that z = f(z1, z2, · · · , z6)

where zi, i = 1, · · · , 6 and z are constants.

we choose f(z1, z2, · · · , z6) = z2 = vnvn+2, therefore

v̄n = vnvn+2

Apply the shift operator to v̄n, yields

Sv̄n = v̄n+1 = vn+1vn+3

S2v̄n = v̄n+2 = un+2un+4

=
vn+2vn

An +Bnvnvn+2

=
v̄n

An +Bnv̄n

which is a second order difference equation, which we solve to find v̄n. From the

above equation we have

1

v̄n+2

= An
1

v̄n
+Bn

Let γn = 1
v̄n

we obtain

γn+2 = Anγn +Bn
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This equation can be solved recursively. Let γ0 and γ1 be given, then

γ2 = A0γ0 +B0

γ3 = A1γ1 +B1

γ4 = A0A2γ0 + A2B0 +B2

γ5 = A1A3γ1 + A3B1 +B3

γ6 = A0A2A4γ0 + A2A4B0 + A4B2 +B4

γ7 = A1A3A5γ1 + A3A5B1 + A5B3 +B5

So the general solution given by

γ2n+m = γm

n−1∏
i1=0

A2i1+m +
n−1∑
i2=0

(
B2i2

n−1∏
m=i2+1

A2m

)
, m = 0, 1

but v̄n = 1
γn

so

1

γ2n+m

=
1

γm
∏n−1

i1=0A2i1+m +
∑n−1

i2=0

(
B2i2

∏n−1
m=i2+1A2m

) , m = 0, 1

we have

v̄2n+m =
v̄m∏n−1

i1=0 A2i1+m + v̄m
∑n−1

i2=0

(
B2i2

∏n−1
m=i2+1A2m

) , m = 0, 1

The canonical coordinate s̄n

s̄n =

∫
dvn

(i)nvn
= (−i)n ln vn

So s̄n+2 − s̄n is an invariant. Consequently,

s̄n+2 − s̄n = (−i)n+2 ln vn+2 − (−i)n ln vn

= −(−i)n(ln vn+2 + ln vn)

= −(−i)n(ln vn+2vn)

= (−1)n+1(i)n(ln v̄n) (4.2.9)
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we have

s̄2 = s̄0 − ln v̄0

s̄3 = s̄1 + i ln v̄1

s̄4 = s̄0 − ln v̄0 + ln v̄2

s̄5 = s̄1 + i ln v̄1 − i ln v̄3

s̄6 = s̄0 − ln v̄0 + ln v̄2 − ln v4

s̄7 = s̄1 + i ln v̄1 − i ln v̄3 + i ln v̄5

So the general solution of the equation (4.2.9) is

s̄2n+m = s̄m +
n−1∑
j=0

−(−i)2j+m ln v̄2j+m, m = 0, 1

= s̄m +
n−1∑
j=0

−(−i)2j+m ln

(
v̄m∏n−1

i1=0 A2i1+m + v̄m
∑n−1

i2=0

(
B2i2

∏n−1
m=i2+1A2m

))

where m = 0, 1. From s̄n = (−i)n ln vn we obtain

v2n+m = exp

(
(i)2n+ms̄2n+m

)
= exp

(
(i)2n+ms̄m + (i)2n+m

n−1∑
j=0

−(−i)2j+m ln v̄2j+m

)
, m = 0, 1

= v(−1)n

m

n−1∏
j=0

(
v̄m∏n−1

i1=0 A2i1+m + v̄m
∑n−1

i2=0

(
B2i2

∏n−1
m=i2+1A2m

))(−1)n+j+1

= (umum+4)(−1)n
n−1∏
j=0

(
umum+2um+4um+6∏n−1

i1=0A2i1+m + umum+2um+4um+6

∑n−1
i2=0

(
B2i2

∏n−1
m=i2+1 A2m

))(−1)n+j+1

(4.2.10)
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The canonical coordinate sn is

sn =

∫
dun(

1√
2

+ 1√
2
i

)n
un

=

(
1√
2
− 1√

2
i

)n
lnun

So sn+4 − sn is an invariant. Consequently,

sn+4 − sn =

(
1√
2
− 1√

2
i

)n+4

lnun−
(

1√
2
− 1√

2
i

)n
lnun

= −
(

1√
2
− 1√

2
i

)n
(lnun+4 + lnun)

= −
(

1√
2
− 1√

2
i

)n
ln vn

we have

s4 = s0 − ln v0

s5 = s1−
(

1√
2
− 1√

2
i

)
ln v1

s6 = s2 + i ln v2

s7 = s3+

(
1√
2

+
1√
2
i

)
ln v3

s8 = s0 − ln v0 + ln v4

s9 = s1−
(

1√
2
− 1√

2
i

)
ln v1−

(√
2(1− i)5

8

)
ln v5

s10 = s2 + i ln v2 − i ln v6

s7 = s3+

(
1√
2

+
1√
2
i

)
ln v3+

(√
2(1− i)7

16
ln v7

)
whose general solution is given by

s4n+m = c0 + (−1)4n+mc1 + (i)4n+mc2 + (−i)4n+mc3 + sm

−
n−1∑
j=1

(
1√
2

+
1√
2
i

)4j+m

ln v4j+m; m = 0, 1, 2, 3
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Also, we have un = exp(( 1√
2

+ 1√
2
i)nsn), , from this we get

u4n+m = exp

(
(

1√
2

+
1√
2
i)4n+mc0 + (

1√
2

+
1√
2
i)4n+m(−1)4n+mc1 + (

1√
2

+
1√
2
i)4n+m

(i)4n+mc2 + (
1√
2

+
1√
2
i)4n+m(−i)4n+mc3 + (

1√
2

+
1√
2
i)4n+msm + (

1√
2

+
1√
2
i)4n+m

n−1∑
j=1

−
(

1√
2

+
1√
2
i

)4j+m

ln v4j+m

)
; m = 0, 1, 2, 3 (4.2.11)

To find c0, c1, c2 and c3, we substitute n = 0 and m = 0, 1, 2, 3, we obtain

c0 + c1 + c2 + c3 = 0

c0 − c1 + ic2 − ic3 = 0

c0 + c1 − c2 − c3 = 0

c0 − c1 − ic2 + ic3 = 0

from this equations we get

c0 = c1 = c2 = c3 = 0

So the greneral solution of equation (4.2.11) is

u4n+m = exp(
1√
2

+
1√
2
i)4n+msm + (

1√
2
− 1√

2
i)4n+m

n−1∑
j=1

(
1√
2

+
1√
2
i

)4j+m

ln v4j+m

= u(−1)n

m

n−1∏
j=0

(v4j+m)(−1)n+j+1

; m = 0, 1, 2, 3 (4.2.12)

Substituting m = 0, 1 in equation (4.2.10), we obtain

v2n = (u0u4)(−1)n
n−1∏
j=0

(
u0u2u4u6∏n−1

i1=0 A2i1+m + u0u2u4u6

∑n−1
i2=0

(
B2i2

∏n−1
m=i2+1A2m

))(−1)n+j+1

v2n+1 = (u1u5)(−1)n
n−1∏
j=0

(
u1u3u5u7∏n−1

i1=0A2i1+m + u1u3u5u7

∑n−1
i2=0

(
B2i2

∏n−1
m=i2+1A2m

))(−1)n+j+1

(4.2.13)
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Substituting m = 0, 1, 2, 3 in equation (4.2.12), we get

u4n = u(−1)0

m

n−1∏
j=0

(v4j)
(−1)n+j+1

u4n+1 = u(−1)1

m

n−1∏
j=0

(v4j+1)(−1)n+j+1

u4n+2 = u(−1)2

m

n−1∏
j=0

(v4j+2)(−1)n+j+1

u4n+3 = u(−1)3

m

n−1∏
j=0

(v4j+3)(−1)n+j+1

Substituting n = 1, 2, · · · , we obtain

u4 = u−1
0 v0

u5 = u−1
1 v1

u6 = u−1
2 v2

u7 = u−1
3 v3

u8 = u0
v4

v0

u9 = u1
v5

v1

u10 = u2
v6

v2

u11 = u3
v7

v3

u12 = u4
v8

v4

u13 = u5
v9

v5

u14 = u6
v10

v6

u15 = u7
v11

v7
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So we can write the soulution as

u8n = u0

n−1∏
k=0

v8k+4

v8k

u8n+1 = u1

n−1∏
k=0

v8k+5

v6k+1

u8n+2 = u2

n−1∏
k=0

v8k+6

v8k+2

u8n+3 = u3

n−1∏
k=0

v8k+7

v8k+3

u8n+4 = u4

n−1∏
k=0

v8k+8

v8k+4

u8n+5 = u5

n−1∏
k=0

v8k+9

v8k+5

u8n+6 = u6

n−1∏
k=0

v8k+10

v8k+6

u8n+7 = u7

n−1∏
k=0

v8k+11

v8k+7

From equtions (4.2.13), we get

u8n = u0

n−1∏
k=0

∏4k+1
i1=0 A2i1 + u0u2u4u6

∑4k+1
i2=0

(
B2i2

∏4k+1
m=i2+1A2m

)
∏4k−1

i1=0 A2i1 + u0u2u4u6

∑4k−1
i2=0

(
B2i2

∏4k−1
m=i2+1A2m

)

u8n+1 = u1

n−1∏
k=0

∏4k+1
i1=0 A2i1+1 + u1u3u5u7

∑4k+1
i2=0

(
B2i2

∏4k+1
m=i2+1 A2m

)
∏4k−1

i1=0 A2i1+1 + u1u3u5u7

∑4k−1
i2=0

(
B2i2

∏4k−1
m=i2+1 A2m

)

u8n+2 = u2

n−1∏
k=0

∏4k+2
i1=0 A2i1 + u0u2u4u6

∑4k+2
i2=0

(
B2i2

∏4k+2
m=i2+1A2m

)
∏4k

i1=0A2i1 + u0u2u4u6

∑4k
i2=0

(
B2i2

∏4k
m=i2+1 A2m

)
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u8n+3 = u3

n−1∏
k=0

∏4k+2
i1=0 A2i1+1 + u1u3u5u7

∑4k+2
i2=0

(
B2i2

∏4k+2
m=i2+1 A2m

)
∏4k

i1=0A2i1+1 + u1u3u5u7

∑4k
i2=0

(
B2i2

∏4k
m=i2+1A2m

)

u8n+4 = u4

n−1∏
k=0

∏4k+3
i1=0 A2i1 + u0u2u4u6

∑4k+3
i2=0

(
B2i2

∏4k+3
m=i2+1A2m

)
∏4k+1

i1=0 A2i1 + u0u2u4u6

∑4k+1
i2=0

(
B2i2

∏4k+1
m=i2+1A2m

)

u8n+5 = u5

n−1∏
k=0

∏4k+3
i1=0 A2i1+1 + u1u3u5u7

∑4k+3
i2=0

(
B2i2

∏4k+3
m=i2+1A2m

)
∏4k+1

i1=0 A2i1+1 + u1u3u5u7

∑4k+1
i2=0

(
B2i2

∏4k+1
m=i2+1 A2m

)

u8n+6 = u6

n−1∏
k=0

∏4k+4
i1=0 A2i1 + u0u2u4u6

∑4k+4
i2=0

(
B2i2

∏4k+4
m=i2+1A2m

)
∏4k+2

i1=0 A2i1 + u0u2u4u6

∑4k+2
i2=0

(
B2i2

∏4k+2
m=i2+1A2m

)

u8n+7 = u7

n−1∏
k=0

∏4k+4
i1=0 A2i1+1 + u1u3u5u7

∑4k+4
i2=0

(
B2i2

∏4k+4
m=i2+1A2m

)
∏4k+2

i1=0 A2i1+1 + u1u3u5u7

∑4k+2
i2=0

(
B2i2

∏4k+2
m=i2+1 A2m

)



CONCLUSION

Lie symmetry is useful to solve nonlinear differential and difference equations. In

this thesis, we review the symmetry method that can be used to solve the differential

and difference equations. In particular, we use the symmetry method to give closed

form of solutions of sixth order difference equation

un+6 =
un

An +Bnunun+3

:= ω

where the initial values u0, u1, · · · , u6 are arbitrary nonzero real numbers and the

eighth order difference equation

un+8 =
un

An +Bnunun+2un+4un+6

:= ω

where the initial values u0, u1, · · · , u8 are arbitrary nonzero real numbers .
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